Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
65_42_Vũ Ngọc Minh Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 10:26

CD=8cm

AD=6cm

AC=BD=10cm

Ninne
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:28

ΔADC vuông tại D

=>\(AC^2=AD^2+DC^2\)

=>\(AC^2=8^2+6^2=100\)

=>AC=10(cm)

ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

=>M là trung điểm chung của AC và BD và AC=BD

=>MD=MB=MA=MC=AC/2=5(cm)

Xét ΔDME vuông tại M và ΔDCB vuông tại C có

\(\widehat{MDE}\) chung

Do đó: ΔDME đồng dạng với ΔDCB

=>\(\dfrac{ME}{CB}=\dfrac{DM}{DC}\)

=>\(\dfrac{ME}{6}=\dfrac{5}{8}\)

=>\(ME=3,75\left(cm\right)\)

TL P
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 11:15

OA=5cm

hoa tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 23:06

OA=5cm

Layla Aarohi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 22:55

Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

\(\Leftrightarrow DE^2=23.04\)

hay DE=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:

\(DA^2=DE\cdot DF\)

\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)

Ta có: DE+EF=DF(E nằm giữa D và F)

nên EF=DF-DE=7,5-4,8=2,7(cm)

Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:

\(AD^2=AE^2+DE^2\)

\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)

hay AE=3,6(cm)

Xét ΔAEF vuông tại E và ΔABC vuông tại B có 

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)

Ta có: AF+FB=AB(F nằm giữa A và B)

nên BF=AB-AF=8-4,8=3,2(cm)

huy hoang Bui
Xem chi tiết
Online Math
16 tháng 8 2016 lúc 13:59

A B D E F C I K M

huy hoang Bui
16 tháng 8 2016 lúc 14:04

em cần lời giải ạ

Akabane Karma
16 tháng 8 2016 lúc 20:10

vẽ hình tùm lum, m;n;p;q không bit vit o dau, ng ve thi sai,ng hoi cu tisk, vay du bit trinh do co nao,tui co lam cung chang hiu noi, dua vao dg trug binh la xong ma cung k bit

lan
Xem chi tiết
Đinh Đình Trí	Kiên
6 tháng 11 2021 lúc 12:43

có làm thì mới có ăn

Khách vãng lai đã xóa
Nguyễn Thị Thanh Vân
Xem chi tiết
Nguyễn Thị Thanh Vân
15 tháng 11 2021 lúc 10:01

giúp mình đi mà:(

Khách vãng lai đã xóa
Vũ minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:13

Xét ΔABD có 

\(cosBAD=\dfrac{AB^2+AD^2-BD^2}{2\cdot AB\cdot AD}\)

=>\(8^2+6^2-BD^2=2\cdot8\cdot6\cdot cos60=48\)

=>\(BD^2=100-48=52\)

=>\(BD=2\sqrt{13}\left(cm\right)\)

Xét ΔBAC có \(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

=>\(8^2+6^2-AC^2=2\cdot8\cdot6\cdot cos120=-48\)

=>\(AC^2=148\)

=>\(AC=2\sqrt{37}\left(cm\right)\)

The Moon
Xem chi tiết
Akai Haruma
19 tháng 7 2021 lúc 17:57

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ADC$:

$\frac{1}{DE^2}=\frac{1}{AD^2}+\frac{1}{DC^2}=\frac{1}{6^2}+\frac{1}{8^2}$

$\Rightarrow DE=4,8$ (cm)

Áp dụng hệ thức lượng trong tgv với tam giác $ADF$:

$AD^2=DE.DF$

$6^2=4,8.DF\Rightarrow DF=7,5$ (cm)

$EF=DF-DE=7,5-4,8=2,7$ (cm)

Tiếp tục áp dụng hệ thức lượng trong tgv $ADF$:

$AE^2=DE.DF=4,8.2,7=12,96\Rightarrow AE=3,6$ (cm)

$AF=\sqrt{AE^2+EF^2}=\sqrt{3,6^2+2,7^2}=4,5$ (cm) theo định lý Pitago

$BF=AB-AF=CD-AF=8-4,5=3,5$ (cm)

Áp dụng htl trong tgv với tam giác $ADC$:

$DE^2=AE.CE$

$4,8^2=3,6.CE\Rightarrow CE=6,4$ (cm)

Akai Haruma
19 tháng 7 2021 lúc 17:57

Hình vẽ:

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 23:53

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D, ta được:

\(\dfrac{1}{DE^2}=\dfrac{1}{DA^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{36}+\dfrac{1}{64}=\dfrac{100}{2304}\)

hay DE=4,8(cm)