Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
The Moon

Cho hình chữ nhật ABCD có AD = 6cm, CD = 8cm. Từ D kẻ đường vuông góc với AC tại E cắt AB tại F. Tính độ dài các đoạn thẳng DE, DF, AE, AF, BF, CE

Akai Haruma
19 tháng 7 2021 lúc 17:57

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ADC$:

$\frac{1}{DE^2}=\frac{1}{AD^2}+\frac{1}{DC^2}=\frac{1}{6^2}+\frac{1}{8^2}$

$\Rightarrow DE=4,8$ (cm)

Áp dụng hệ thức lượng trong tgv với tam giác $ADF$:

$AD^2=DE.DF$

$6^2=4,8.DF\Rightarrow DF=7,5$ (cm)

$EF=DF-DE=7,5-4,8=2,7$ (cm)

Tiếp tục áp dụng hệ thức lượng trong tgv $ADF$:

$AE^2=DE.DF=4,8.2,7=12,96\Rightarrow AE=3,6$ (cm)

$AF=\sqrt{AE^2+EF^2}=\sqrt{3,6^2+2,7^2}=4,5$ (cm) theo định lý Pitago

$BF=AB-AF=CD-AF=8-4,5=3,5$ (cm)

Áp dụng htl trong tgv với tam giác $ADC$:

$DE^2=AE.CE$

$4,8^2=3,6.CE\Rightarrow CE=6,4$ (cm)

Akai Haruma
19 tháng 7 2021 lúc 17:57

Hình vẽ:

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 23:53

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D, ta được:

\(\dfrac{1}{DE^2}=\dfrac{1}{DA^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{36}+\dfrac{1}{64}=\dfrac{100}{2304}\)

hay DE=4,8(cm)


Các câu hỏi tương tự
Nguyễn Thị Thơm
Xem chi tiết
Layla Aarohi
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
nguyễn viết hạ long
Xem chi tiết
Đỗ Thị Thanh Nguyên
Xem chi tiết
Hang Nguyen
Xem chi tiết
Huỳnh Nguyễn Quỳnh Như
Xem chi tiết
Phan Anh Thư
Xem chi tiết