Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Layla Aarohi

Cho hình chữ nhật ABCD có AD=6cm, CD=8cm. Qua D kẻ đường thẳng vuông góc với AC cắt AC tại E và cắt AB tại F. Tính độ dài BF?

Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 22:55

Xét ΔADC vuông tại D có DE là đường cao ứng với cạnh huyền AC nên ta có:

\(\dfrac{1}{DE^2}=\dfrac{1}{AD^2}+\dfrac{1}{DC^2}\)

\(\Leftrightarrow\dfrac{1}{DE^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{25}{576}\)

\(\Leftrightarrow DE^2=23.04\)

hay DE=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAFD vuông tại A có AE là đường cao ứng với cạnh huyền DF, ta được:

\(DA^2=DE\cdot DF\)

\(\Leftrightarrow DF=\dfrac{6^2}{4.8}=7,5\left(cm\right)\)

Ta có: DE+EF=DF(E nằm giữa D và F)

nên EF=DF-DE=7,5-4,8=2,7(cm)

Áp dụng định lí Pytago vào ΔADE vuông tại E, ta được:

\(AD^2=AE^2+DE^2\)

\(\Leftrightarrow AE^2=6^2-4.8^2=12.96\)

hay AE=3,6(cm)

Xét ΔAEF vuông tại E và ΔABC vuông tại B có 

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF=\dfrac{AE\cdot AC}{AB}=\dfrac{3.6\cdot8}{6}=4.8\left(cm\right)\)

Ta có: AF+FB=AB(F nằm giữa A và B)

nên BF=AB-AF=8-4,8=3,2(cm)


Các câu hỏi tương tự
The Moon
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Đỗ Thục Quyên
Xem chi tiết
Nguyễn Thị Thơm
Xem chi tiết
Phan Anh Thư
Xem chi tiết
Huỳnh Nguyễn Quỳnh Như
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
Hang Nguyen
Xem chi tiết
Phạm Thị Phương Thảo 9D
Xem chi tiết