5^3x:5^5=5^2020:5^2016
5^3x:5^5=5^2020:5^2016
ai giup minh voi
53x:55=52020:52016
\(5^{3x}:5^5=5^{2020}:5^{2016}\)
\(5^{3x-5}=5^{2020-2016}=5^4\)
\(3x-5=4\Leftrightarrow3x=4+5=9\Leftrightarrow x=9:3=3\)
\(\frac{5^{3x}}{5^5}=\frac{5^{2020}}{5^{2016}}=5^{2020-2016}=5^4\Rightarrow5^{3x}=5^4.5^5=5^{4+5}=5^9\Rightarrow x=3\)
53x:55=52020:52016
53x:55=54
53x=55.54
53x=59
x.3=9
x =9:3
x =3
Đơn giản lắm nha bạn !
Ngày 19/5 năm 2016 vào thứ 6. Hỏi ngày 19/5 năm 2020 là thứ mấy ? ( Ghi cách giải rõ ràng , nhớ rằng 2016 là năm nhuận )
|3x-5| (2y + 5) 2022(42-3)2020<=0
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
1. 2019/2020-(2019/2020-2020/2021)
2.2/9+7/9 :(42/5-7/5
3.a)3/4+x/4=5/8
4./3x+1/-1/4=-1/4
1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)
Giải:
1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}\)
\(=\dfrac{2020}{2021}\)
2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\)
\(=\dfrac{2}{9}+\dfrac{7}{9}:7\)
\(=\dfrac{2}{9}+\dfrac{1}{9}\)
\(=\dfrac{1}{3}\)
3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\)
\(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\)
\(\dfrac{x}{4}=\dfrac{-1}{8}\)
\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\)
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x-1\right|=0\)
\(3x-1=0\)
\(3x=0+1\)
\(3x=1\)
\(x=1:3\)
\(x=\dfrac{1}{3}\)
Chúc bạn học tốt!
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x+1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x+1\right|=0\)
\(3x+1=0\)
\(3x=0-1\)
\(3x=-1\)
\(x=-1:3\)
\(x=\dfrac{-1}{3}\)
a, (4x^2 - 2)^2 = 196/81
b, (2x-4)^2016 + | x^2-4 | = 0
c, (7 - 3x)^2020 = (3x - 7)^2018
d, (4x - 7)^2 -5|7 - 4x| = 0
Giúp mik vs!
a) \(\left(4x^2-2\right)^2=\frac{196}{81}\)
<=> \(2^2\left(2x^2-1\right)^2=\frac{196}{81}\)
<=> \(4\left(2x^2-1\right)^2=\frac{196}{81}\)
<=> \(\left(2x^2-1\right)^2=\frac{196}{81}:4\)
<=> \(\left(2x^2-1\right)^2=\frac{49}{81}\)
<=> \(2x^2-1=\pm\sqrt{\frac{49}{81}}\)
<=> \(2x^2-1=\pm\frac{7}{9}\)
<=> \(\orbr{\begin{cases}2x^2-1=\frac{7}{9}\\2x^2-1=-\frac{7}{9}\end{cases}}\)<=> \(\orbr{\begin{cases}x=\pm\frac{2\sqrt{2}}{3}\\x=\pm\frac{1}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm\frac{2\sqrt{2}}{3}\\x=\pm\frac{1}{3}\end{cases}}\)
A=7^2020^2019-3^2016^2015/5 . chứng tỏ A chia hết cho 2
A=7 mu 2020 mu 2019-3 mu 2016 mu 2015 :5 chung to A la so chan