Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Thành Mai
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 11 2023 lúc 16:25

Giả sử x;y;z đều chẵn

\(\Rightarrow x=2a;y=2b;z=2c\Rightarrow xyz=8abc⋮4\)

Nếu x;y;z đều lẻ => (x-y); (y-z); (z-x) chẵn

\(\Rightarrow\left(x-y\right)=2a;\left(y-z\right)=2b;\left(z-x\right)=2c\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=8abc⋮4\)

Nếu trong 3 số x;y;z có ít nhất 1 số lẻ giả sử x lẻ  

=> xyz chẵn và \(xyz=2a\)

=> (y-z) chẵn và \(y-z=2b\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)=\)

\(=2a.\left(x-y\right).2b.\left(z-x\right)=4ab\left(x-y\right)\left(z-x\right)⋮4\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮4\forall x;y;z\)

Nếu 1 trong 3 số x; y; z chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

Nếu không có số nào chia hết cho 3 ta có một số khi chia cho 3 dư 1 hoặc 2 => trong 3 số có 2 số đồng dư

=> 1 trong 3 số (x-y); (y-z); (z-x) có 1 số chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\forall x;y;z\)

Mà 3 và 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3.4=12\forall x;y;z\)

 

 

Cẩm Tú Mèo
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:34

a: y=0

x=1

Phương Mỹ Linh
Xem chi tiết
Kiệt Nguyễn
9 tháng 10 2020 lúc 19:57

Ta chứng minh bằng phản chứng

Giả sử xyz không chia hết cho 7 thì x, y, z không chia hết cho 7 (vì 7 là số nguyên tố)

Xét số n không chia hết cho 7 thì n có dạng 7k + 1; 7k + 2; 7k + 3; 7k + 4; 7k + 5; 7k + 6

* n = 7k + 1 thì n3 = (7k + 1)3 = BS7 + 1 (chia 7 dư 1)

* n = 7k + 2 thì n3 = (7k + 2)3 = BS7 + 8  (chia 7 dư 1)

* n = 7k + 3 thì n3 = (7k + 3)3 = BS7 + 27  (chia 7 dư 6)

* n = 7k + 4 thì n3 = (7k + 4)3 = BS7 + 64  (chia 7 dư 1)

* n = 7k + 5 thì n3 = (7k + 5)3 = BS7 + 125  (chia 7 dư 6)

* n = 7k + 6 thì n3 = (7k + 6)3 = BS7 + 216  (chia 7 dư 6)

Như vậy, nếu n không chia hết cho 7 thì n3 chia 7 dư 1 hoặc 6

Áp dụng, ta được a3 + b3 chia 7 dư 2; 5 hoặc 0 và c3 chia 7 dư 1 hoặc 6 (điều này vô lí vì theo giả thiết thì x3 + y3 = z3)

Vậy điều giả sử là sai. Vậy xyz chia hết cho 7 (đpcm)

Khách vãng lai đã xóa
vtzking tony
Xem chi tiết
Đinh Thuỳ Vân
Xem chi tiết
o0o I am a studious pers...
25 tháng 7 2018 lúc 12:49

i don't now

mong thông cảm !

...........................

Uyên
25 tháng 7 2018 lúc 12:49

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

nhiều qá lm sao nổi

Ayano
Xem chi tiết
Thanh Tùng DZ
5 tháng 11 2017 lúc 20:58

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)

\(\Rightarrow\frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{\left(x+y+z\right)^3}{\left(y+z+t\right)^3}=\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{z}{t}\)

Vậy .. 

Đặng Gia Ân
Xem chi tiết
My Nguyen
Xem chi tiết
Nghịch Dương
Xem chi tiết
Nguyễn Tuấn Minh
14 tháng 8 2016 lúc 15:20

Theo tính chất của dãy tỉ số bằng nhau, ta có

\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+y+2+x+y-3+1}{x+y+z+x+y+z}\)

=\(\frac{\left(x+y+z\right)+\left(x+y+y1+2-3\right)}{\left(x+y+z\right)+\left(x+y+z\right)}=\frac{\left(x+y+z\right)+\left(x+y+y+1\right)}{\left(x+y+z\right)+\left(x+y+z\right)}\)

=>x+y+y+1=x+y+z

=>y+1=z

Vậy đáp số cần tìm là x,y,z khác 0

x tùy ý

y tùy ý

z=y+1

Công chúa Sakura
14 tháng 8 2016 lúc 15:08

Đề là gì ????

Nghịch Dương
14 tháng 8 2016 lúc 15:12

Tìm x,y,z