tìm các số x , y , z biết rằng x : y : z =2 : 4 : 5 và x + y +z =33
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
1) Cho x, y, z là ba số dương phân biệt. Hãy tìm tỉ số x/y ,biết rằng:
y/x-z=x+y/z=x/y
2) Tìm các số x, y, z , biết rằng
x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
tìm ba số x,y,z biết rằng
1/x/2=y/3=z/5 và 2x-y+z=12
2/x/2=y/3,y/4=z/5 và x+y-z=10
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Tìm các số x, y, x biết rằng :
a) 3x = 2y, 7y = 5z, x - y + z = 32
b) x/3 = y/4, y/2 = x/5, 2x -3y + z = 6
c) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
d) x - 1/2 = y - 2/3 = z - 3/4 và 2x + 3y - z =50
e) x/2 = y/3 = z/5 và xyz = 810
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Tìm 3 số x,y,z biết rằng x/2=y/3, y/4=z/5 và x+y-z=10.
Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\) \(\left(\text{*}\right)\)
\(\frac{y}{4}=\frac{z}{5}\) \(\left(\text{*}\text{*}\right)\)
\(x+y-z=10\) \(\left(\text{*}\text{*}\text{*}\right)\)
\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)
\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)
Cả (*) và (**) thế vào (***)
\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)
\(\Leftrightarrow x=16;z=30\)
Vậy ...
Tìm các số hữu tỉ x,y và z biết rằng :
x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x,y,z biết
X/2=y/3; y/4=z/5 và x-y+z=33
X:y:z=2:3:4 và x+3y-2z=3
1)
Có:\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\\\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y+z}{8-12+15}=\frac{33}{11}=3\) (vì x-y+z=33)
\(\Rightarrow\hept{\begin{cases}x=3.8=24\\y=3.12=36\\y=3.15=45\end{cases}}\)(tm)
Vậy.....................
2)
Có: \(\text{ x:y:z=2:3:4 }\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)(vì x+3y-z=3)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)(tm)
Vậy................