Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức An
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 10 2020 lúc 11:10

a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )

c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )

Khách vãng lai đã xóa
Lê Vũ Ngọc Phúc
Xem chi tiết
Phong
9 tháng 1 2024 lúc 14:21

Bạn xem lại đề bài nếu chứng minh luôn dương thì sao có dấu = bạn nhỉ

Lê Thanh Dương
Xem chi tiết
Nguyễn Kiên
14 tháng 6 2017 lúc 15:00

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Mike
25 tháng 6 2019 lúc 12:50

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Hương Hoàng
Xem chi tiết
Trà My
17 tháng 8 2017 lúc 23:57

\(x^2+2y^2-2xy+4y+5=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+1\)

\(=\left(x-y\right)^2+\left(y+2\right)^2+1\ge1>0\)

=>đpcm

Trần Đình Hoàng Quân
Xem chi tiết
Phong
13 tháng 8 2023 lúc 8:09

a) Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

Nàng tiên cá
Xem chi tiết
_Guiltykamikk_
19 tháng 6 2018 lúc 9:56

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)

Trần Đình Hoàng Quân
Xem chi tiết

Sửa đề: \(4x^2+y^2+z^2-4x-2z+2y+2014\)

Ta có: \(4x^2+y^2+z^2-4x-2z+2y+2014\)

\(=4x^2-4x+1+y^2+2y+1+z^2-2z+1+2011\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2+\left(z-1\right)^2+2011\ge2011>0\forall x,y,z\)

Ko cần bít
Xem chi tiết
Nguyễn Anh Quan
15 tháng 1 2018 lúc 20:32

Có : x^2+y^2+z^2+4x-2y-4z+10

= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1

= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1

=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z

Không Tên
15 tháng 1 2018 lúc 20:32

\(x^2+y^2+z^2+4x-2y-4z+10\)

\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)

\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)

Vì  \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\) 

\(\Rightarrow\)\(đpcm\)

Khổng Trang
15 tháng 1 2018 lúc 20:41

đâylà toán lớp 6, 7 rồi bạn

TĐ 2304
Xem chi tiết
Dao Van Thinh
19 tháng 10 2020 lúc 11:27

a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)

các câu khác dùng phương pháp tương tự

Khách vãng lai đã xóa
Ngô Thị Yến Nhi
19 tháng 10 2020 lúc 11:32

a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4

Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0

b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4

Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0

c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4

Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0

d) x^2 + y^2 -2x-2y + 2xy +1

= ( x^2 + 2xy + y^2) - 2( x+y) +1

= ( x+y)^2 -2(x+y) +1

= (x +y +1)^2 >=0

g) x^2+y^2+2(x-2y)+6

= (x^2 + 2x +1) + (y^2 -4y+4) +1

= ( x+1)^2 + (y-2)^2 +1

Vì (x+1)^2; (y-2)^2 >= 0 =>  ( x+1)^2 + (y-2)^2 +1>=1>0

Khách vãng lai đã xóa
Khánh Ngọc
19 tháng 10 2020 lúc 11:44

a. x2 + x + 1 = x2 + x +\(\frac{1}{4}+\frac{3}{4}\)= ( x +\(\frac{1}{2}\))2 +\(\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

=> Đpcm

b. 4x2 - 2x + 1 = 4x2 - 2x +\(\frac{1}{4}+\frac{3}{4}\)= 4 ( x -\(\frac{1}{4}\))2 +\(\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

=> Đpcm

c. x4 - 3x2 + 9 = ( x2 )2 - 3x2 + 32 = ( x2 + 3x + 3 ) ( x2 - 3x + 3 )

= [ ( x +\(\frac{3}{2}\))2 +\(\frac{3}{4}\)] [ ( x -\(\frac{3}{2}\))2 +\(\frac{3}{4}\)] > 0 với mọi x

=> Đpcm

d. x2 + y2 - 2x - 2y + 2xy + 1 = ( x2 + 2xy + y) - ( 2x + 2y ) + 1

= ( x + y )2 - 2 ( x + y ) + 12

= ( x + y - 1 )2\(\ge0\forall x;y\)

=> Đpcm

g. x2 + y2 + 2 ( x - 2y ) + 6 = x2 + y2 + 2x - 4y + 6

= ( x2 + 2x + 1 ) + ( y2 - 4y + 4 ) + 1

= ( x + 1 )2 + ( y - 2 )2 + 1\(\ge1>0\forall x;y\)

=> Đpcm

Khách vãng lai đã xóa
vu thi thuy duong
Xem chi tiết
lê duy mạnh
17 tháng 10 2019 lúc 20:13

(x+y)^2+2(x+y)+1+2(y-1)^2+2013>0