Tim a,b,c,sao cho : ab+bc+ca=abc
tim 3 so nguyen to a,b,c sao cho abc nho hon ab+bc+ca
abc < ab+bc+ac
<=> 1/a+1/b+1/c > 1 (*)
giả sử a > b >c => 1/a < 1/b <1/c
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2
thay c = 2 vào (*) được:
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3
thay b = 3; c = 2 vào (*) được:
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5
vậy (a;b;c) = (2;3;5)
cho mình 1 đ-ú-n-g nha
abc < ab+bc+ac
<=> 1/a+1/b+1/c > 1 (*)
giả sử a > b >c => 1/a < 1/b <1/c
1 < 1/a +1/b +1/c < 1/c + 1/c + 1/c = 3/c => c < 3 => c = 2
thay c = 2 vào (*) được:
1/2 < 1/a + 1/b < 1/b + 1/b = 2/b => 2 < b < 4 => b = 3
thay b = 3; c = 2 vào (*) được:
1/a > 1 - 1/2 - 1/3 = 1/6 => 3 < a < 6 => a = 5
vậy (a;b;c) = (2;3;5)
Giả sử a≤b≤c⇒ab+bc+ca≤3bc.
Theo giả thiết abc<ab+bc+ca (1) nên abc<3bc⇒a<3
mà a là số nguyên tố nên a = 2.
Thay a = 2 vào (1)
được 2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4.
Vì b là số nguyên tố nên b = 2 hoặc b = 3.
Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.
Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
tim tat ca cac bo 3 so nguyen to a,b,c
sao cho abc<ab+bc+ca
hay tim tat ca so nguyen duong a,b,c doi mot nguyen to cung nhau sao cho a<b<c va a+b+c+ab+bc+ac chia het cho abc
lam duoc minh se tang tick
Tim stn a,b,c , biet abc < ab + bc + ca
Mik làm vậy các bn xem đúng ko nha
Vì abc < ab + bc + ca
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\left(1\right)\)
Giả sử a > b > c => \(\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\)
\(1< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{c}+\frac{1}{c}+\frac{1}{c}=\frac{3}{c}\)=> c < 3 => c= 2
Thay c = 2 vào (1) ta được :
\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}< \frac{1}{b}+\frac{1}{b}=\frac{2}{b}=>2< b< 4=>b=3\)
thay b = 3 , c = 2 ta được
\(\frac{1}{a}>1-\frac{1}{2}-\frac{1}{3}=\frac{1}{6}=>a< 3< 6=>a=5\)
Vậy bộ số ( a ; b ;c ) = ( 2 ; 3 ; 5 )
Giả sử a = 2 ; b = 3 ; c = 5
=> a . b . c = 2 . 3 . 5 = 30
=> ab + bc + ca = ( 2.3 ) + ( 3 . 5 ) + ( 2 . 5 )
=> ab + bc + ca = 6 + 15 + 10
=> ab + bc + ca = 31
Mak 30 \(\ne\)31
=> Bn nguyễn thị thanh thảo làm sài!
mình giải thích \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\)vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{b}{ab}+\frac{a}{ab}+\frac{1}{c}=\frac{a+b}{ab}+\frac{1}{c}=\frac{c.\left(a+b\right)}{abc}+\frac{ab}{abc}=\frac{ac+bc+ab}{abc}\)Mà abc<ab+bc+ca=>\(\frac{ab+bc+ac}{abc}\)>1
tim tat ca cac bo so nguyen to a,b,csao cho abc<ab+bc+ca
Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow ab+bc+ca\le ab+ab+ab=3ab\)
\(\Rightarrow abc< 3ab\Rightarrow c< 3\Rightarrow c=2\)
\(\Rightarrow2ab< ab+2\left(a+b\right)\Rightarrow ab< 2\left(a+b\right)\)
\(\Rightarrow ab-2b-2b+4< 4\Rightarrow\left(a-2\right)\left(b-2\right)< 4\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)=\left\{1;2;3\right\}\)
- Với \(\left(a-2\right)\left(b-2\right)=1\Rightarrow a=b=3\)
- Với \(\left(a-2\right)\left(b-2\right)=2\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=3;b=4\end{matrix}\right.\) (loại)
- Với \(\left(a-2\right)\left(b-2\right)=3\Rightarrow\left[{}\begin{matrix}a=5;b=3\\a=3;b=5\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(2;3;5\right)\) và các hoán vị của chúng
cho các số thực dương a, b, c sao cho abc=1
cm \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\le1\)
\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)
=\(\frac{1}{abc}.\left(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\right)\)
=\(\frac{1}{a^5c+b^5c+abc}+\frac{1}{b^5a+c^5a+abc}+\frac{1}{c^5b+a^5b+abc}\)
\(\le\)\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)
Ta có : a3+b3=(a+b)(a2-ab+b2)\(\ge\)ab(a+b) (cosi)
Tương tự ta được:
b3+c3\(\ge bc\left(b+c\right)\)
c3+a3\(\ge ca\left(c+a\right)\)
Như vậy \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)
\(\le\)\(\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)
=\(\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
=\(\frac{1}{a+b+c}.\left(\frac{a+b+c}{ab+bc+ca}\right)=\frac{1}{ab+bc+ca}\le1\)
mình tò mò muốn biết BĐT trên đẳng thức khi nào nhỉ
Không phải chới đâu BĐT cuối của bạn không bao giờ =1 được
\(\frac{1}{ab+bc+ac}\le\frac{1}{3}\) Đẳng thức khi a=b=c=1
p/s: đoạn trước bạn viết loạn lên chưa cần xem
tim a,b,c biet a+b+c+ab+bc+ca chia het cho abc
ai lam nhanh trong 10 phut minh tang 9 tick
cho tam giác ABC có B=60, C<A
a,chứng minh rằng AB<BC
b,trên BC lấy D sao cho BD=BA chứng minh rằng tam giác ABD đều
c,AB,BC,CA
a) xét ΔABC ta có
C<A
=> AB < BC ( quan hệ giữa góc và cạnh đối diện trong Δ)
b)xét ΔABD ta có
BD = BA
=> ΔABD là Δ cân tại B
mà B=60o
=> ΔABD làΔ đều
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)