Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần ngọc tường vy
Xem chi tiết
A Thuw
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 19:00

a: =5-78*32

=5-2496

=-2491

b: \(=6\left(9-6\right)=6\cdot3=18\)

c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)

d: \(=181+3-84+8\cdot25\)

=100+200

=300

e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)

=14000-1

=13999

f: \(=3^3+25\cdot8-1=26+200=226\)

g: \(=3+2^4+1=16+4=20\)

h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)

Nguyễn Tùng Anh
Xem chi tiết
Nguyễn Minh Quang
28 tháng 9 2021 lúc 23:22

mình làm theo cách lớp 12 nhé 

undefined

Khách vãng lai đã xóa
Xem chi tiết
T.Ps
21 tháng 6 2019 lúc 20:49

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)

\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)

\(\Rightarrow2S=3^{2020}-3\)

\(\Rightarrow S=\frac{3^{2020}-3}{2}\)

Nguyễn Khánh Huyền
21 tháng 6 2019 lúc 20:52

từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3

nguyễn tuấn thảo
21 tháng 6 2019 lúc 20:55

S=3+32+...+32019

Xem chi tiết
T.Ps
21 tháng 6 2019 lúc 21:05

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

☞╯ʟâм✾oᴀɴн╰☜
21 tháng 6 2019 lúc 21:19

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt

trần quốc dũng
22 tháng 6 2019 lúc 16:02

\(S=3^1+3^2+3^3+...+3^{2017}+3^{2018}+3^{2019}\)

    \(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

      \(=3\left(1+3+9\right)+3^4\left(1+3+9\right)+....+3^{2017}\left(1+3+9\right)\)

     \(=3.13+3^4.13+...+3^{2017}.13\)

      \(=13.\left(3+3^4+...+3^{2017}\right)⋮13\) (đpcm)

Minh anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2023 lúc 0:40

2/3A=2/3-(2/3)^2+...+(2/3)^2019-(2/3)^2020

=>5/3A=1-(2/3)^2020

=>A=(3^2020-2^2020)/3^2020:5/3=\(\dfrac{3^{2020}-2^{2020}}{3^{2020}}\cdot\dfrac{3}{5}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên

Võ Thành Tài
Xem chi tiết
I don
26 tháng 9 2018 lúc 17:37

S = 1-3 + 32 - 33 + ..+ 32018 - 32019

=> 3S = 3 - 32 + 33 - 34 +...+ 32019 - 32020

=> 3S + S = 1 - 32020

4S = 1 - 32020

\(S=\frac{1-3^{2020}}{4}\)

Vũ Hải Lâm
26 tháng 9 2018 lúc 17:37

bài này phải là 1 + đó bạn

Rainbow shines
Xem chi tiết
KWS
16 tháng 9 2018 lúc 11:32

\(3^{202}:3^{199}-4^{301}.4^{199}\)

\(=3^{202-199}-4^{301+199}\)

\(=3^3-4^{500}\)

\(=9-4^{500}\)

Nguyen Thi Kim Minh
Xem chi tiết
Phùng Minh Quân
14 tháng 9 2018 lúc 21:49

Ta  có : 

\(A=1+3+3^2+3^3+...+3^{2018}\)

\(3A=3+3^2+3^3+3^4+...+3^{2019}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)

\(2A=3^{2019}-1=B\)

\(\Rightarrow\)\(A=\frac{1}{2}B\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

lê bảo ngọc
3 tháng 1 2019 lúc 20:04

A bé hơn B đó bạn 

nguyễn ngọc thiên kim
Xem chi tiết
Sunn
9 tháng 5 2021 lúc 22:09