Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:59

b: \(S=3^0+3^2+3^4+...+3^{2002}\)

\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

secret1234567
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 12:00

b: \(S=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)

DUNGKHANH.PRO HE HE
Xem chi tiết
DUNGKHANH.PRO HE HE
7 tháng 1 2021 lúc 20:42

giup minh voi

 

mikusanpai(՞•ﻌ•՞)
7 tháng 1 2021 lúc 20:56

tham khảo

https://olm.vn/hoi-dap/detail/49371559502.html

cái này khó

Ly
Xem chi tiết
nguyen_phuong_linh
Xem chi tiết
shitbo
18 tháng 12 2018 lúc 19:20

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

Huyền Nhi
18 tháng 12 2018 lúc 19:24

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

Tuquynh Tran
Xem chi tiết
Hồng Nhan
17 tháng 10 2021 lúc 16:54

undefined

Nguyễn Tấn Quang
Xem chi tiết
Anh chàng Bạch Dương
23 tháng 11 2015 lúc 19:54

S = 2 + 22 + ... + 2150

   = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 2146 + 2147 + 2148 + 2149 + 2150 ) 

   = 2.(1+2+22+23+24) + 26.(1+2+22+23+24) + ... + 2146(1+2+22+23+24)  

   = 2.31 + 26.31 + ... + 2146.31

   = 31.(2+26+...+2146) chia hết cho 31

Nguyen Quynh Trang
Xem chi tiết
Nguyễn Huy Tú
13 tháng 11 2016 lúc 6:01

a) S = 3 + 32 + ... + 31998

=> S = ( 3 + 32 ) + ... + ( 31997 + 31998 )

=> S = ( 3 + 9 ) + ... + 31996 . ( 3 + 32 )

=> S = 12 + ... + 31996 . 12

=> S = ( 1 + ... + 31996 ) . 12 chia hết cho 12

=> S chia hết cho 12

b) S = 3 + 32 + ... + 31998

=> S = ( 3 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )

=> S = 39 + ... + 31995 . ( 3 + 32 + 33 )

=> S = 39 + ... + 31995 . 39

=> S = ( 1 + ... + 31995 ) . 39 chia hết cho 39

=> S chia hết cho 39

Yukaki
Xem chi tiết