Cho tam giác ABC vuông tại A chứng minh sinB trên sinC = AC trên AB
1. Cho tam giác ABC. Biết AB=10cm, AC=24cm,BC=26cm
a) Chứng minh tam giác ABC vuông ở A
b) Tính sinB, sinC
c) Tính chiều cao AH và các đoạn mà chiều cao đó chia ra trên cạnh BC
Ta có AB^2+AC^2=10^2+24^2=676
BC^2=26^2=676
=> Tam Giác ABC vuông tại A(đpcm)
b, \(\sin B=\frac{AC}{BC}=\frac{24}{26}=\frac{12}{13}\)
\(\sin C=\frac{AB}{BC}=\frac{10}{26}=\frac{5}{13}\)
c,Áp dụng hệ thức AB.AC=AH.BC
=> AH=AB.AC/BC=10.24/26=9,2
\(AB^2=BH.BC\)\(\Leftrightarrow10^2=BH.26\)\(\Rightarrow BH\approx3,8\)
\(\Rightarrow CH=22,2\)
cho tam giác ABC có AB=21cm, AC=28cm, BC=35cm
a. chứng minh tam giác ABC vuông. Tính Diện tích ABC
b. tinh SinB, SinC
c. Đường phân giác của góc A cắt BC tại D . Tính DB, DC
a. Ta có: AB2 + AC2 = 212 + 282 = 1225
BC2 = 352 = 1225
=> BC2 = AB2 + AC2
=> Tam giác ABC là tam giác vuông (Định lý Pytago đảo)
Diện tích tam giác ABC
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.21.28=294\left(cm^2\right)\)
b. \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)
\(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{3}{5}\)
c. Ta có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{21}{28}=\frac{3}{4}\)\(\)
=> 4BD = 3DC
<=> 4BD = 3(BC - BD)
<=> 7BD = 3BC
<=> 7BD = 3 . 35
=> BD = 15 (cm)
=> DC = 20 (cm)
Cho tam giác ABC. Biết : AB = 21cm, AC = 28cm, BC = 35cm.
a) Chứng minh tam giác ABC vuông.
b) Tính sinB, sinC.
Ta có : 212 + 282 = 1225
mà 352 = 1225
=> 212 + 282 = 352
=> tam giác ABC vuông ( ĐL Py-ta-go đảo )
a) Ta có \(AB^2+AC^2=21^2+28^2=1225\)
mà \(BC^2=35^2=1225\)
Do đó \(AB^2+AC^2=BC^2\)
Do đó tam giác ABC vuông tại A ( Py-ta-go đảo )
b) Ta có \(sinb=\frac{28}{35}=\frac{4}{5}\)
\(sinc=\frac{21}{35}=\frac{3}{5}\)
a) Áp dụng đính lý Pi-ta-go đảo :
BC2 = AB2 + AC2
BC2 = 212 + 282
BC2 = 1225
=> BC = 35 ( cm )
=> Tam giác ABC là là vuông .
b) \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)
\(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{7}{5}\)
Cho tam giác ABC AB =c, BC =a , AC=b. Chứng minh 2SinA=SinB + SinC
cho tam giác ABC nhọn, AB=c,AC=b,BC=a. Chứng minh a/sinA=b/sinB=c/sinC
Kẻ AH vuông góc BC
Xét ΔAHB vuông tại H có sin B=AH/AB
=>AH=c*sin B
Xét ΔAHC vuông tại H có sin C=AH/AC
=>AH=AC*sin C=b*sin C
=>c*sin B=b*sin C
=>c/sinC=b/sinB
Kẻ BK vuông góc AC
Xét ΔABK vuông tại K có
sin A=BK/AB
=>BK=c*sinA
Xét ΔBKC vuông tại K có
sin C=BK/BC
=>BK/a=sin C
=>BK=a*sin C
=>c*sin A=a*sin C
=>c/sin C=a/sin A
=>a/sin A=b/sinB=c/sinC
Cho tam giác ABC vuông tại A, chứng minh rằng AC/AB=SinB/SinC
Xét ΔABC vuông tại A có
\(\left\{{}\begin{matrix}\sin B=\dfrac{AC}{BC}\\\sin C=\dfrac{AB}{AC}\end{matrix}\right.\)
nên \(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{AC}=\dfrac{AC}{BA}\)
Cho tam giác ABC nhon, đường cao AH. Chứng minh rằng AB×SinB=AC×SinC
Bài 1: Cho tam giác ABC biết AB=10cm, AC=24cm, BC=26cm
Chứng minh: a, Tam giác ABC vuông tại A
b, Tính sinB, sinC từ đó suy ra số đo góc B, C
c, Tính chiều cao AH và các đoạn mà đường cao đó chia ra trên cạnh BC.
( Giúp mình bài 1 này trước nha, cảm ơn mngười nhiều <3)
Bài 2: Cho tam giác nhọn ABC, gọi AA', BB', CC' là các đường cao của tam giác
a, Chứng minh tam giác ABC đồng dạng với tam giác A'B'C'
b, Chứng minh rằng AB'.BC'.CA'=AB.BC.CA.cosA.cosB.cosC
c, Cho góc A =30 độ, AB=4cm,AC=8cm. Tính diện tích tam giác ABC
~ Giúp mình với, mình đang vội quá T.T
Cho tam giác ABC có AB=21m , AC= 28m , BC=35m. a) chứng minh tam giác ABC vuông b) tính sinB,sinC c)gọi H là chân đường cao hạ từ A.Tính BH, CH d)gọi M là trung điểm của BC.Tính AM và diện tích tam giác AHM Giúp mik câu d với mik bí câu này 🥰
a) Ta có: \(AB^2+AC^2=21^2+28^2=1225=35^2=BC^2\)
=> Tam giác ABC vuông tại A(Pytago đảo)
b) Xét tam giác ABC vuông tại A có:
\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}\)
\(sinC=\dfrac{AB}{BC}=\dfrac{21}{35}=\dfrac{3}{5}\)
c) Áp dụng HTL:
\(AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{21^2}{35}=\dfrac{63}{5}\left(m\right)\)
\(CH=BC-BH=35-\dfrac{63}{5}=\dfrac{112}{5}\left(m\right)\)
d) Xét tam giác ABC vuông tại A có:
AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.35=17,5\left(m\right)\)
Áp dụng HTL:
\(AH^2=BH.HC\)
\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{\dfrac{63}{5}.\dfrac{112}{5}}=\dfrac{84}{5}\left(m\right)\)
Ta có: \(HM=BM-BH=\dfrac{1}{2}BC-BH\)(do AM là trung tuyến ứng với cạnh huyền)
\(\Rightarrow HM=\dfrac{1}{2}.35-\dfrac{63}{5}=\dfrac{49}{10}\left(m\right)\)
\(S_{AHM}=\dfrac{1}{2}.AH.HM=\dfrac{1}{2}.\dfrac{84}{5}.\dfrac{49}{10}=\dfrac{1029}{25}\left(m^2\right)\)
Bài 2: Cho ΔABC vuông tại A
a) Chứng minh: \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
b) Chứng minh: \(BC^2=AB^2+AC^2-2.AB.AC.cosA\)
a) Xét ΔABC vuông tại A có
\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)
Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)
\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)
\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)
Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)
b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)
\(=2\cdot AB\cdot AC\cdot0\)
=0
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)