Cho tam giác ABC cân tại A,đ/cao AH,kẻ HD vuông góc với AC,nối BD. Gọi M là trung điểm HD, qua M kẻ đường song song với BC cắt BD tại E,cắt CD tại F.
a)C/m ME=MF.
b) C/m AM vuông góc với HF ?
Cho tam giác ABC cân tại A,đ/cao AH,kẻ HD vuông góc với AC,nối BD. Gọi M là trung điểm HD, qua M kẻ đường song song với BC cắt BD tại E,cắt CD tại F.
a)C/m ME=MF.
b) C/m AM vuông góc với HF ?
cho tam giác ABC cân tại A.Kẻ đường cao AH. Kẻ HD vuông góc AC , HM song song BD (M thuộc AC)
a) chứng minh M là trung điểm của CD
b) Gọi N là trung điểm của HD , tia MN cắt AH tại E. Chứng minh : ME vuông góc AH
c) Chứng minh : AN vuông góc BD
A, TA CÓ: AH vuông góc với CB, tam giác ABC cân tại A=>AH là đường trung tuyến của ABC=>CH=CB
Xét tam giác CDB có MH // DB, CH=CB =>M trung điểm của CD (T/C đường tb của tam giác)
b, xét tam giác CDB có CM=MD, DN=NB=>MN là đường tb của tam giác CDB => MN // CB
MÀ AH vuông góc với CB,=>MN vuông góc với AH mà E thuộc MN=>ME vuông góc với AH
CÒN PHẦN C THÌ MK KO BIẾT. SORRY NHA
Cho tam giác ABC cân tại A và đường cao AH. Vẽ HD vuông góc với AC. Nối BD. Từ M là trung điểm của HD vẽ dg thẳng // với BC cắt BD tại E,CD tại F.
CM a)ME=MF
b)AM vuông góc với HF
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC. Từ H kẻ HD vuông góc AB tại D và HE vuông góc với AC tại E. a/ Chứng minh: tam giac HDB = tam giacHEC b/ Chứng minh : AD=AE. c/ Qua A kẻ đường thẳng xy song song BC, tia HD cắt xy tại M, tia HE cắt xy tại N. Chứng minh tam giác HMN là tam giác cân?
giup tui voii tks nhieuu
a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHDB=ΔHEC
b: Ta có: ΔHDB=ΔHEC
nên BD=EC
Ta có: AD+DB=AB
AE+EC=AC
mà BD=CE
và AB=AC
nên AD=AE
Cho tam giác ABC có AB bằng ac điểm I là trung điểm ah Chứng minh tam giác amb bằng tam giác amc từ đó chứng minh AM vuông góc với BC b từ B kẻ đường thẳng vuông góc c cắt AC tại D Chứng minh AM song song với BD CD từ A Kẻ AH vuông góc với BD chứng minh be = AC đi ACB D Chứng minh H là trung điểm của BD
cho tam giác ABC cân tại A(góc A nhọn) Vẽ AH vuông góc BC(H thuộc BC).
a) C/m:Tam giác AHB = tam giác AHC
b)Gọi M là trung điểm CH, từ M vẽ đường thẳng vuông góc BC cà cắt AC tại D C/m:Tam giác DMC = tam giác DMH và Hd song song AB
c)BD cắt AH tại G. C/m G là trọng tâm tam giác ABC và 2/3(AH +BD)>AB
Làm hộ mk ạ
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có
DM chung
MH=MC
=>ΔDMH=ΔDMC
=>góc DHC=góc DCH
=>góc DHC=góc ABH
=>DH//AB
c: Xét ΔAHC có
M là trung điểm của CH
MD//AH
=>D là trung điểm của AC
Xét ΔABC có
BD,AH là đường cao
BD cắt AH tại G
=>G là trọng tâm
Cho tam giác ABC cân tại A. Dựng đường cao AH. Dựng HD vuông góc AC và CM // BD (M thuộc AC). a) Chứng minh rằng M là trung điểm của CD. b) Gọi N là trung điểm HD. Tia MN cắt AH tại E. Chứng minh rằng ME vuông góc AH. c) Chứng minh rằng AN vuông góc BD. (Không sử dụng công thức đường trung bình)
-Em ơi hình như đề bài sai rồi ấy ( C trùng với M).
Cho ∆ABC cân tại A ( góc A nhọn , AB>BC ) . Gọi M là trung điểm của BC. a) Chứng minh: ∆ABM=∆AMC. b) Kẻ MD vuông góc với AB tại D , kẻ ME vuông góc với AC tại E . Chứng minh : ∆EDM là tam giác cân. c) Qua M kẻ đường thẳng song song với AB , cắt cạnh AC tại F . Chứng minh : F là trung điểm của AC Giải giúp mình ạ
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có
AM chung
góc DAM=góc EAM
=>ΔADM=ΔAEM
=>MD=ME
=>ΔMED cân tại M
c: Xét ΔCAB có
M là trung điểm của CB
MF//AB
=>F là trung điểm của AC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath