-Em ơi hình như đề bài sai rồi ấy ( C trùng với M).
-Em ơi hình như đề bài sai rồi ấy ( C trùng với M).
Cho tam giác ABC cân tại A. Lấy điểm M thuộc AB, điểm N thuộc tia đối của tia CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại điểm O. Gọi H là giao điểm của AO và BC, kẻ HD vuông góc với AC(D thuộc AC)
a. Chứng minh rằng: Tam giác MON cân
b. Biết AH= 5 cm, HD=3 cm. Tính độ dài HC
c. Gọi F là giao điểm của MN và BC. Chứng minh rằng OF vuông góc với MN
Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.
Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho
Sắp hết Tết rùi giúp mk vs
4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC
a)Chứng minh: ∆AHB = ∆AHC ;
b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân
c)Chứng minh MN // BC ;
d)Chứng minh AH2 + BM2 = AN2 + BH2
5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC
.a)Chứng minh : ADBDABˆˆ=;
b)Chứng minh : AD là phân giác của góc HAC
c) Chứng minh : AK = AH.
6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)
a) Chứng minh : HB = HC và ·CAH = ·BAH
b)Tính độ dài AH ?
c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC
7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.
Chứng minh rằng :a) ∆ AFE cân
b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE
c) Chứng minh rằng : AE = (AB+AC):2
8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .
Chứng minh : a) ΔEDB = Δ EIB ;
b) HB = BF
c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;
d) DI // HF
9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .
a)Chứng minh rẳng : ΔABH = ΔEBH ;
b)Chứng minh BH là trung trực của AE
c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC
10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.
a).CMR: ΔMHB = ΔMKC
b).CMR: AC = HK
c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC
11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.
a) CMR: ∆ ABE = ∆ ACD.
b) CMR: HD = HE.
c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.
d) CMR: AO là tia phân giác của góc BAC ?
e) A ,O , H thẳng hàng
12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)
a) Chứng minh BH = HC và BAH = CAH
b) Tính độ dài BH biết AH = 4 cm
c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).
d) Tam giác ADE là tam giác gì? Vì sao?
Cho tam giác ABC cân tại A có điểm H là trung điểm của BC
a)Chứng minh tam giác ABH = tam giác ACH.Từ đó suy ra AH vuông góc BC
b)Kẻ HD vuông góc AB và HE vuông góc AC(D thuộc AB,E thuộc AC).Chứng minh BD=CE
c)Chứng minh:DE // BC
d)Lấy điểm M tùy ý trên cạnh HE,trên tia đối của tia EH lấy điểm N sao cho HM = EN.Từ M kẻ đường thẳng vuông góc với HE cắt BC tai I.Chứng minh:IN vuông góc AN.
1, Cho tam giác abc vuông tại a , đường cao ah. ab=3cm,ac=4cm
a,Tính ah
b, Kẻ hm vuông góc ab,hn vuông góc ac. Chứng minh am=hn
c,Ah và mn cắt nhau tại o .Chứng minh o là trung điểm của h
d,Gọi k là trung điểm của bc. Chứng minh ak vuông góc mn
e, Gọi q là trung điểm của bh, t là trung điểm ch. Chứng minh qm vuông góc mn
g, Tính diện tích mntq
2, Cho abc vuông tại a , đường cao ah. M là trung điểm của ch.Từ b kẻ đường thẳng vuông góc ab trên đó lấy điểm d sao cho bd =1/2 ad . Gọi n là trung điểm của ah
a,Chứng minh mn= bd
b,Chứng minh bn vuông góc am
c, Tính góc dam
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm E sao cho CE=BD. Các đường thẳg vuông góc với BC kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a)Chứng minh rằng: BM = CN.
b)Gọi I là giao điểm MN với BC, đường thẳng vuông góc với MN tại I cắt đường thẳng AH tại K (H là trung điểm BC). Chứng minh tam giác KMN cân.
c)Chứng minh rằng: CK vuông góc với AN
Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC > 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.
3
b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH > EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD < AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD < DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC > 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK
. Gọi N là giao điểm của
CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.
giúp mk với
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia đối của tia AH lấy điểm D sao cho AD=AH. Gọi E và M lần lượt là trung điểm
a) Chứng minh rằng ba điểm H, F, M thẳng hàng
b) Chứng minh rằng HF= 1/3 DC
c) Gọi P là trung điểm AH. Chứng minh EP vuông góc AB
d) Chứng minh BP vuông góc với DC và CP vuông góc với BD
Cho tam giác abc cân tại a (ab=ac). Vẽ ah vuông góc với bc tại h (h thuộc bc). a, chứng minh tam giác ahb = tam giác ahc.
b, gọi m là trung điểm ch. từ m vẽ đường vuông góc với bc cắt ac tại d.
c/m tam giác dmc = tam giác dmh và hd // ab. c, vẽ bd cắt ah tại g. c/m g là trọng tâm của tam giác abc và 2/3 (ah+bd) > ab