Cho F(x)=5/4x^2 + 2x + 2. Chứng minh rằng đa thức F(x) không thể nhận giá trị bằng 0 với mọi x
cho hai đa thức f(x)= 2x^3-2x^2+3x-2; g(x)= 2-x^3-2x-x^3-x. chứng tỏ rằng với x nhận giá trị là một số thực bất kì thì hai đa thức f(x) và g(x) không thể cùng nhận giá trị dương
cho hai đa thức f(x)= 2x^3-2x^2+3x-2; g(x)= 2-x^3-2x-x^3-x. chứng tỏ rằng với x nhận giá trị là một số thực bất kì thì hai đa thức f(x) và g(x) không thể cùng nhận giá trị dương
cho hai đa thức f(x)= 2x^3-2x^2+3x-2; g(x)= 2-x^3-2x-x^3-x. chứng tỏ rằng với x nhận giá trị là một số thực bất kì thì hai đa thức f(x) và g(x) không thể cùng nhận giá trị dương
f(x) = 2x3 - 2x2 + 3x - 2 (1)
g(x) = 2 - x3 - 2x - x3 - x = 2 - 2x3 - x (2)
lấy (1) + (2), ta đc:
2x3 - 2x2 + 3x - 2
+ - 2x3 -x + 2
------------------------------------
-2x2 + 2x
=> -2x2 + 2x = 2x - 2x2
....................... (chỉ cần chứng minh f(x) + g(x) âm thì f(x) và g(x) ko thể cùng nhận giá trị dương)
Chứng minh rằng các đa thức sau luôn luôn nhận giá trị dương với mọi giá trị của biến:
a,x^2+4x+7
b,4x^2-4x+5
c,x^2+2y^2+2xy-2y+3
d,2x^2-4x+10
e,x^2+x+1
f,2x^2-6x+5
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
cho đa thức f(x) với hệ số nguyên biết f(x) =2017 với 5 giá trị nguyên của x.chứng minh f(x) không thể nhận giá trị bằng 2007 với mọi giá trị nguyên của x
a) Cho biểu thức E = x + 1 x 2 x 2 + 1 x 2 + 2 x + 1 1 x + 1 .
Chứng minh rằng: Giá trị của biểu thức E luôn bằng 1 với mọi giá trị x ≠ 0 và x ≠ - 1
b) Cho biểu thức F = x + 1 2 x − 2 + 3 x 2 − 1 − x + 3 2 x + 2 . 4 x 2 − 4 5 .
Chứng minh rằng với những giá trị của x hàm F xác định thì giá trị của F không phụ thuộc vào x.
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
cho f(x) là đa thức bậc 5 hệ số nguyên biết f(x) nhận 1945 với 4 giá trị nguyên của x .Chứng minh với mọi x thì f(x) không thể có giá trị là 1995
cho đa thức f(x) với hệ số nguyên và bậc 5. f(x) nhận 5 giá trị bằng 1999 với 4 giá trị nguyên khác nhau của x. chứng minh rằng
f(x)-2030 không có nghiệm nguyên
cho đa thức f(x)=ax^2+bx+c chứng minh rằng nếu 13a+3b+c lớn hơn 0 thì f(1) và f(5) không cùng nhận giá trị âm
\(f\left(1\right)=a+b+c;f\left(5\right)=25a+5b+c\)
\(f\left(1\right)+f\left(5\right)=a+b+c+25a+5a+c=26a+6a+2c=2\left(13a+3a+c\right)>0\)
\(f\left(1\right)=a.\left(1^2\right)+b.1+c=a.b.c\)
\(f\left(5\right)=5^2.a+b.5+c=25a+5b+c\)
\(f\left(1\right)+f\left(5\right)=a+b+c+25a+5b+c\)
\(f\left(1\right)+f\left(5\right)=26a+6b+2c=2.13a+2.3b+2c=2\left(13a+3b+c\right)>0\)