Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Quốc Anh
Xem chi tiết
IOI
2 tháng 10 2017 lúc 22:41

Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3

= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3

Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0

=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3

= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )

= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )

Tami Hiroko
Xem chi tiết
Trần Thị Hà Trang
18 tháng 10 2019 lúc 16:05

(x -y)3  - 1 - 3(x -y)(x - y - 1)

= (x -y)3  - 3(x -y)(x - y - 1) - 1

Đặt x - y = t, khi đó ta có:

    t3  -  3t. (t  - 1) - 1

=   t3  -  3t2  + 3t - 1

=  (t  - 1)3

Thay t = x - y vào (t - 1)3 , ta có:  ( x - y - 1)3

Vậy (x -y)3  - 1 - 3(x -y)(x - y - 1) =  ( x - y - 1)3

Khách vãng lai đã xóa
MInemy Nguyễn
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
NHK
29 tháng 9 2019 lúc 21:28

bạn thu gom 2 đa thức đầu tiên thành 1 nhóm và 2 đa thức sau thành 1 nhóm . sau đó dùng hđt rồi đem chung 

nên nhớ 8=23

Nguyễn Như Quỳnh
Xem chi tiết
Trần Đăng Nhất
28 tháng 7 2017 lúc 13:06

\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)

\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)

\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)

\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)

\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)

\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)

\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)

\(=[(x-z)[y(x+z+y)+zx]]\)

\(=-(x-z)(yx+yz+y2+zx)\)

\(=-(x-z)(yx+zx+yz+y2)\)

\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)

\(=-(x-z)(y+z)(x+y)\)

Nguyễn Trung Dũng
Xem chi tiết
゚°☆Ňø Ňαɱε☆° ゚
25 tháng 11 2019 lúc 20:43

trả lời:

\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\frac{\left(x-y\right)^3+z^3+3x^2y-3xy^2+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)

\(=\frac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2zx}\)

\(=\frac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-zx\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)

\(=\frac{x-y+x}{2}\)

~hok tốt~

Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 23:19

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

Akai Haruma
21 tháng 5 2021 lúc 23:22

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

Akai Haruma
21 tháng 5 2021 lúc 23:23

Bài 3:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)

Do đó:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

Ta có đpcm.

Thomas Huy Nguyễn
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Le Thi Khanh Huyen
9 tháng 7 2015 lúc 13:31

thế lớp mấy mà ko làm đc

Trần Lê Huy
Xem chi tiết
Le Thi Khanh Huyen
31 tháng 10 2016 lúc 18:18

Làm như vầy là sai hướng rồi.

Tham khảo :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)

\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)

\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)