phan tich thanh nhan tu:
\(x\left(y^3-z^3\right)+y\left(z^3-x^3\right)+z\left(x^3-y^3\right)\)
phan tich da thuc sau thanh nhan tu :
\(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
phan tich da thuc thanh nhan tu
\(\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)\)
(x -y)3 - 1 - 3(x -y)(x - y - 1)
= (x -y)3 - 3(x -y)(x - y - 1) - 1
Đặt x - y = t, khi đó ta có:
t3 - 3t. (t - 1) - 1
= t3 - 3t2 + 3t - 1
= (t - 1)3
Thay t = x - y vào (t - 1)3 , ta có: ( x - y - 1)3
Vậy (x -y)3 - 1 - 3(x -y)(x - y - 1) = ( x - y - 1)3
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Phân tích đa thức thành nhan tử :
\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
bạn thu gom 2 đa thức đầu tiên thành 1 nhóm và 2 đa thức sau thành 1 nhóm . sau đó dùng hđt rồi đem chung
nên nhớ 8=23
Phân tich da thuc thanh nhan tu
a)\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)
\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)
\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)
\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)
\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)
\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)
\(=[(x-z)[y(x+z+y)+zx]]\)
\(=-(x-z)(yx+yz+y2+zx)\)
\(=-(x-z)(yx+zx+yz+y2)\)
\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)
\(=-(x-z)(y+z)(x+y)\)
rút gon phan thuc\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
trả lời:
\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\frac{\left(x-y\right)^3+z^3+3x^2y-3xy^2+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)
\(=\frac{\left(x-y+z\right)\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2zx}\)
\(=\frac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)
\(=\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-zx\right)}{2\left(x^2+y^2+z^2+xy+yz-zx\right)}\)
\(=\frac{x-y+x}{2}\)
~hok tốt~
1. Cho các số x, y, z thỏa mãn : (x + y)(y + z)(z + x) = 4. CMR: \(\left(x^2-y^2\right)^3\)+ \(\left(y^2-z^2\right)^3\)+ \(\left(z^2-x^2\right)^3\)= 12 (x - y)(y - z)(z - x)
2. Rút gọn: \(\dfrac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\) biết (x + y)(y + z)(z + x) = 1
3. Cho a, b, c ≠ 0 thỏa mãn: a + b + c = \(a^2+b^2+c^2\) = 2. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
MONG MN GIẢI GIÚP EM Ạ!!! EM ĐANG CẦN GẤP ! CẢM ƠN MN NHIỀU
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
Bài 3:
\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)
Do đó:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)
Ta có đpcm.
CMR: \(\left(y-z\right)^3.\left(1-x^3\right)+\left(z-x\right)^3.\left(1-y^3\right)+\left(x-y\right)^3.\left(1-z^3\right)=3\left(1-xyz\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Chứng minh rằng:
\(\left(y-z\right)^3.\left(1-x^3\right)+\left(z-x\right)^3.\left(1-y^3\right)+\left(x-y\right)^3.\left(1-z^3\right)=3\left(1-xyz\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Phân tích đa thức thành nhân tử :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3.x^2.y+3.x.y^2+y^3+z^3-x^3-y^3-z^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
\(=3.x^2.y+3.x.y^2+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
\(=3xy.\left(x+y\right)+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
Cô ơi, em phải làm tiếp sao ạ ? cô ơi, cô giải chi tiết giúp em nhe cô, em cám ơn cô nhiều ạ, hihi ^^
Làm như vầy là sai hướng rồi.
Tham khảo :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)
\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)
\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)
\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)