Cho tam giác ABC cân tại A , đường trung tuyến AM.Gọi I là trung điểm AC,K là điểm đối xứng với M qua I
a) Tứ giác AMCK là hình gì ?Chứng minh:
b) Tìm đk của tam giác ABC để AMCK là hình vuông .
Cho tam giác ABC cân tại A , trung tuyến AM.Gọi I là trung điểm của AC , K là điểm đối xứng với M qua I a, AMCK là hình gì ? Vù sao ? b, AKMB là hình gì? vì sao ? c Tìm điều kiện của tam giác ABC để AMCK là hình vuông
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: AMCK là hình chữ nhật
=>AK//CM và AK=CM
AK=CM
MB=MC
Do đó: AK=MB
AK//CM
\(B\in CM\)
Do đó: AK//MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
c: Để AMCK là hình vuông thì CA là phân giác của góc MCK
=>\(\widehat{ACM}=\dfrac{1}{2}\cdot90^0=45^0\)
=>\(\widehat{ABC}=45^0\)
Cho tam giác ABC cân tại A. Đường trung tuyến AM. Gọi I là trung điểm AC, K là điểm đối xứng với M qua I.
a) Tứ giác AMCK là hình gì ? Vì sao ?
b) Tứ giác AKMB là hình gì ? Vì so ?
c) Tìm D/K của tam giác ABC để tứ giác AMCK là hình vuông ?
Tứ giác AMCK là hcn vì
AI=IC(I là trung điểm của AC)
IM=IK(K là điểm đối xứng vs M qua I)
=>Tứ giác AMCK là hình bình hành(DHNB số 5)
Xét tứ giác AMCK có góc M vuông
=> Hình bình hành AMCK là hcn
Tứ giác ACMB là hình bình hành vì
Ta có Bm ss AK (MC ss AK theo tính chắt hcn)
Xét tam giác ABC có BM=MC,AI=IC
=>IM là đường trung bình của tam giác ABC
=>IM ss Ab
Mà I nằm giữa M và K =>MK ss AB
=>ABMK là hình bình hành (DHNB số 1)
Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông
a) xét tứ giác AMCK ta có :
IA=IC
IK=IM
=>tứ giác AKCM là hình bình hành
mà góc AMC bằng 90độ
=> tứ giác AKCM lá hình chữ nhật
b)xét tứ giác AKMB ta có:
AK//MC (tứ giác AKCM là hình chữ nhật)
AK=MC(tứ giác AKCM là hình chữ nhật)
mà MB=MC (AM là đường trrung tuyến)
=>AK//MB
AK=MB
=> tứ giác AKMB là hình bình hành
c) hình chữ nhật AKCM là hình vuông
AM=MB
mà BM=MC=1/2BC
=>AM= 1/2BC
vậy tam giác ABC vuông cân tại A
Cho tam giác ABC cân tại A , đường truq tuyến AM.Gọi I là truq điểm AC , K là điểm đối xứng với M qua I
A) Tứ giác AMCK là hình j ? Vì sao
B) Tứ giác AKMB là hình j ? vì sao
C) Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông ?
xét tứ giác AMCA có:
IK = IM (gt)
IA =IC (gt)
Suy ra :Tứ giác AMCK là hình bình hành
Mặt khác thì góc M =90
Suy ra :tứ giác AMCH là hình chữ nhật (đpcm)
b) TA có; IM là đường trung bình của tam giác ABC
Suy ra; MI // AB ,MI= 1/2 AB
suy ra; M K= AB, MK // AB
Vậy AKMB là hình bình hành
c) em k bt
c. amck là hình vuông <=>am=ac
<=>am=bc/2(mc=bc/2)
<=>tam giac abc vuong tai a
Cho tam giác ABC cân tại A. Đường trưng tuyến AM gọi I là trung điểm AC , K là đối xứng vớ M qua điểm I A. Tứ giác AMCK là hình gì ? Vì sao ? B. Tìm kiều kiên tâm giác ABC để tứ giác AMCK là hình vuông
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
hay ΔABC vuông tại A
Cho tam giác ABC cân tại A . Đường trung tuyến AM , Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I
a, Chứng minh tứ giác AMCK là hình chữ nhật
b, Tính diện tích hình chữ nhật AMCK. Biết AM=12cm, MC=5cm
c, TÌm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông
cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I
a) chứng minh tứ giác AMCK lá hình chữ nhật
b)chứng minh AB//MK
c)tìm điều kiện của tam giác ABC để tứ giác AMCK lá hình vuông
chắc của chị ngọc anh đúng ko Tiểu Thư Họ Phạm
Cho tam giác ABC cân tại A, đường trúng tuyến AM. Gọi I là trung điểm của AC. K là điểm đối xứng với M qua I. a) CM: tứ giác AMCK là hình chữ nhật b) CM: AB=MK c) Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông. d) Cho AB=AC=5cm; BC=6cm. Tính diện tích tam giác ABC.
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đo: AMCK là hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
=>AB=MK
c: Để AMCK là hìh vuông thì AM=CM=BC/2
=>ΔABC vuông tại A
d: P=(5+5+6)/2=8
\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)
Cho tam giác ABC cân tại A, đường cao AM. Gọi I là trung điểm của AC ; K là điểm đối xứng với M qua I
a)c/m Tử giác AMCK là hình chữ nhật
b) c/m Tứ giác AKMB là hình bình hành
c) Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.
vẽ hình luôn đc k:>
a) Xét tứ giác AMCK:
I là trung điểm của AC (gt).
I là trung điểm của MK (K là điểm đối xứng với M qua I).
Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)
=> Tứ giác AMCK là hình chữ nhật (dhnb).
b) Xét tam giác ABC cân tại A: AM là đường cao (gt).
=> AM là trung tuyến (Tính chất tam giác cân).
=> M là trung điểm của BC.
=> BM = MC.
Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).
BM = MC (cmt).
=> AK = MC = BM.
Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).
=> AK // BM.
Xét tứ giác AKMB:
AK // BM (cmt).
AK /= BM (cmt).
=> Tứ giác AKMB là hình bình hành (dhnb).
c) Tứ giác AMCK là hình vuông (gt).
=> AK = AM (Tính chất hình vuông).
Mà AK = BM (cmt).
=> AM = BM = AK.
Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).
=> AM = BM = AK = \(\dfrac{1}{2}\) BC.
Xét tam giác ABC cân tại A:
AM = \(\dfrac{1}{2}\) BC (cmt).
=> Tam giác ABC vuông cân tại A.
Cho tam giác ABC cân tại A bc = 12 cm, đường trung tuyến AM. Gọi I là trung điểm của AC,K là điểm đối xứng với M qua câu a chứng minh tứ giác AMCK là hình chữ nhật câu b tính diện tích tam giác AMC câu c tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông