Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:30

a: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM\(\perp\)BC

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: AMCK là hình chữ nhật

=>AK//CM và AK=CM

AK=CM

MB=MC

Do đó: AK=MB

AK//CM

\(B\in CM\)

Do đó: AK//MB
Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

c: Để AMCK là hình vuông thì CA là phân giác của góc MCK

=>\(\widehat{ACM}=\dfrac{1}{2}\cdot90^0=45^0\)

=>\(\widehat{ABC}=45^0\)

Ngô Hoàng Kim Ngân
Xem chi tiết
pham trung thanh
8 tháng 11 2017 lúc 20:24

Bạn vẽ được hình ko

đức việt
8 tháng 11 2017 lúc 20:37

Tứ giác AMCK là hcn vì

AI=IC(I là trung điểm của AC)

IM=IK(K là điểm đối xứng vs M qua I)

=>Tứ giác AMCK là hình bình hành(DHNB số 5)

Xét tứ giác AMCK có góc M vuông

=> Hình bình hành AMCK là hcn

Tứ giác ACMB là hình bình hành vì

Ta có Bm ss AK (MC ss AK theo tính chắt hcn)

Xét tam giác ABC có BM=MC,AI=IC

=>IM là đường trung bình của tam giác ABC

=>IM ss Ab

Mà I nằm giữa M và K =>MK ss AB

=>ABMK là hình bình hành (DHNB số 1)

Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông

nguyễn thị kim huyền
8 tháng 11 2017 lúc 20:48

A C B K M i

a) xét tứ giác AMCK ta có :

IA=IC

IK=IM

=>tứ giác AKCM là hình bình hành

mà góc AMC bằng 90độ

=> tứ giác AKCM lá hình chữ nhật

b)xét tứ giác AKMB ta có:

AK//MC (tứ giác AKCM là hình chữ nhật)

AK=MC(tứ giác AKCM là hình chữ nhật)

mà MB=MC (AM là đường trrung tuyến)

=>AK//MB

AK=MB

=> tứ giác AKMB là hình bình hành

c) hình chữ nhật AKCM là hình vuông

AM=MB

mà BM=MC=1/2BC

=>AM= 1/2BC

vậy tam giác ABC vuông cân tại A

Đỗ Thanh Huyền
Xem chi tiết
Ngọc Trâm
9 tháng 11 2016 lúc 11:50

 

xét tứ giác AMCA có:

IK = IM (gt)

IA =IC (gt)

Suy ra :Tứ giác AMCK là hình bình hành

Mặt khác thì góc M =90

Suy ra :tứ giác AMCH là hình chữ nhật (đpcm)

b) TA có; IM là đường trung bình của tam giác ABC

Suy ra; MI // AB ,MI= 1/2 AB

suy ra; M K= AB, MK // AB

Vậy AKMB là hình bình hành

c) em k bt

 

 

PHẠM NGUYỄN LAN ANH
10 tháng 11 2016 lúc 21:20

mình ko biết

nguyen tuan duc
19 tháng 12 2016 lúc 13:36

c. amck là hình vuông <=>am=ac

<=>am=bc/2(mc=bc/2)

<=>tam giac abc vuong tai a

 

Trâm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 21:45

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

hay ΔABC vuông tại A

Hải Yến
Xem chi tiết
Tiểu Thư Họ Phạm
Xem chi tiết
Cô bé bánh bèo
17 tháng 11 2016 lúc 16:21

bài ở đâu vậy bà

Cô Bé Bán Diêm
17 tháng 11 2016 lúc 20:20

chắc của chị ngọc anh đúng ko Tiểu Thư Họ Phạm

ly tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 10:40

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đo: AMCK là hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

=>AB=MK

c: Để AMCK là hìh vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

d: P=(5+5+6)/2=8

\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)

Ari chan
Xem chi tiết
Thanh Hoàng Thanh
26 tháng 1 2022 lúc 16:00

a) Xét tứ giác AMCK:

I là trung điểm của AC (gt).

I là trung điểm của MK (K là điểm đối xứng với M qua I).

Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)

=> Tứ giác AMCK là hình chữ nhật (dhnb).

b) Xét tam giác ABC cân tại A: AM là đường cao (gt).

=> AM là trung tuyến (Tính chất tam giác cân).

=> M là trung điểm của BC.

=> BM = MC.

Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).

          BM = MC (cmt).

=> AK = MC = BM.

Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).

=> AK // BM.

Xét tứ giác AKMB:

AK // BM (cmt).

AK /= BM (cmt).

=> Tứ giác AKMB là hình bình hành (dhnb).

c) Tứ giác AMCK là hình vuông (gt).

=> AK = AM (Tính chất hình vuông).

Mà AK = BM (cmt).

=> AM = BM = AK.

Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).

=> AM = BM = AK = \(\dfrac{1}{2}\) BC.

Xét tam giác ABC cân tại A: 

AM = \(\dfrac{1}{2}\) BC (cmt).

=> Tam giác ABC vuông cân tại A.

Nguyễn Thành Danh
Xem chi tiết