Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ctuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 21:50

3) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{FH}{EH}=\dfrac{BH}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)

Xét ΔFHE và ΔBHC có 

\(\dfrac{FH}{BH}=\dfrac{EH}{CH}\)(cmt)

\(\widehat{FHE}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔFHE\(\sim\)ΔBHC(c-g-c)

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 21:46

1) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(đpcm)

Nguyễn Lê Phước Thịnh
16 tháng 4 2021 lúc 21:48

2) Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Trần Ánh Dương
Xem chi tiết
Thuỳ Lê Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2023 lúc 8:23

a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

b: Xét tứ giác AFHE có

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

=>góc FAH=góc FEH

=>goc BAD=góc BEF

NMỹ Ng
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2023 lúc 20:20

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AE/AB=AF/AC và AE*AC=AB*AF

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

=>góc AEF=góc ACB

c; góc AFH=góc AEH=90 độ

=>AFHE nội tiếp (I)

=>IF=IE

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp (M)

=>MF=ME

=>MI là trung trực của EF

=>MI vuông góc EF

Nguyễn An
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 22:02

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(AE\cdot AC=AB\cdot AF\)

b: Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

quanh
Xem chi tiết
Nguyễn Vân Anh
Xem chi tiết
Trần Nam Khánh
Xem chi tiết
Đặng Thiên Long
Xem chi tiết