Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yoai0611
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 1:53

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

Akai Haruma
30 tháng 1 2021 lúc 1:55

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

Nhok Silver Bullet
Xem chi tiết
Blue Frost
Xem chi tiết
Đinh quang hiệp
24 tháng 6 2018 lúc 13:53

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

Khánh Linh
Xem chi tiết
nguyễn ngọc lan
1 tháng 11 2017 lúc 14:42

1.=> n+7-(n+2) chia hết cho n+2

=>n+7-n-2 chia hết cho n+2

=>5 chia hết cho n+2

=>n+2 thuộc Ư(5)=1;5

ta có bảng:

n+215
nloại 3   

Vậy n=3

MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ

nguyễn ngọc lan
4 tháng 11 2017 lúc 13:40

3.3n+15 chia hết cho n+1

=>3n+15-n+1 chia hết cho n+1

=>3n+15-3(n+1) chia hết cho n+1 

=>3n+15-3n-3 chia hết cho n+1 

=>12 chia hết cho n+1 

=>n+1 thuộc Ư(12)=1;2;3;4;6;12

ta có bảng:

n+1123412
n0123

11

Vậy n thuộc 0;1;2;3;11

TomBoy  Là Tôi
Xem chi tiết
mùi
5 tháng 12 2017 lúc 13:24

xy-3x+2y-6=x+9

xy-3y+2y-x=6+9

xy-y-x=15

đỗ minh khôi
Xem chi tiết
goo hye sun
Xem chi tiết
Thanh Tùng DZ
7 tháng 12 2017 lúc 20:37

đặt A = n . ( 2n + 7 ) . ( 7n + 1 )

Ta thấy trong 2 số n và 7n + 1 sẽ có 1 số chẵn với mọi n thuộc N

A = n . ( 7n + 1 ) \(⋮\)2 ( 1 )

Ta cần chứng minh : n . ( 2n + 7 ) . ( 7n + 1 ) \(⋮\)

Giả sử : n = 3k + r ( k \(\in\)N , r = { 0 ; 1 ;2  } )

với n = 3k \(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(⋮\)3

với n = 3k + 1 \(\Rightarrow\)2n + 7 = 6k + 9 \(⋮\)\(\Rightarrow\)\(⋮\)3

với n = 3k + 2 \(\Rightarrow\)7n + 1 = 21k + 15 \(⋮\)\(\Rightarrow\)\(⋮\)3

Như vậy, A \(⋮\)\(\forall\)\(\in\)N ( 2 )

Mà ( 2 ; 3 ) = 1 

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)6

Nguyễn Thị Kim Yến
7 tháng 12 2017 lúc 20:39

lên mạng có thì phải

Nguyễn Ngọc Yến Nhi
Xem chi tiết
ngonhuminh
14 tháng 12 2016 lúc 11:18

\(B=n\left(2n+7\right)\left(7n+1\right)\)

ta cần chứng minh B chia hêt cho 2 và cho 3 mọi n thuộc N

(*) C/m B chia hết cho 2

với n chẵn hay n=2k hiển nhiên B chia cho 2

với n lẻ hay n=2k+1 =>(7n+1)=7(2k+1)+1=14k+2=2(7k+1) chia hết cho 2

=> B chia hết cho 2 (*) dduocj c/m

(**)c/m B chia hết cho 3

với n chia hết cho 3; n=3k hiển nhiên B chia hết cho 3

với n chia 3 dư 1: n=3k+1 => (2n+7)=2(3k+1)+7=6k+2+1=6k+3=3(3k+1) chia hết cho 3

với n chia 3 dư 2: n=3k+2 => (7n+1)=7(3k+2)+1=21k+14+1=21k+15=3(7k+5) chia hét cho 3

(**) dduocj c/m

(*) &(**) => B chia hết cho 6=> dpcm

Ngô Minh Ngọc
Xem chi tiết
Dương Helena
16 tháng 12 2015 lúc 21:56

n(2n+7)(7n+7)=14n3 + 63n2 + 49n= 14n(n+1)(n+2) +3.7n(n+1)

Nên tích đó chia hết cho 6

Tick nha Ngô Minh Ngọc