tìm 2 chữ số tận cùng của:
a,220
b,74
c,52013
d,2100
Tìm 3 chữ số tận cùng của:
a)93^2005
b)67^102
c)4^199
Tìm chữ số tận cùng của:A=19^5^1^8^9^0+2^9^1^9^6^9
\(19^{5^{1^{8^{9^0}}}}=19^5;2^{9^{1^{9^{6^9}}}}=2^9\)
195=194.19=...1.19=...9
29=24.24.2=16.16.2=...2
=>195+29 có tận cùng là 1
vậy chữ số tận cùng của \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)là 1
Tìm chữ số tận cùng của:
a) M = 1 + 7 + 7^2 + 7^3 + ……..+ 7^2019 b) N = 3 + 3^3 + 3^5 + … + 3^101
Chữ số tận cùng của số 21 + 22 + ... + 2100 là?
Tìm chữ số tận cùng của:a,571999 b,931999
a,Ta xét chữ số tận cùng của 7^1999=(7^4)^499.7^3
7^1999=2401^499.343
=> Chữ số tận cùng của 7^1999=1.3(Vì chữ số tận cùng của 2401^499 là 1 và chữ số tận cùng của 343 là 3)
=>Chữ số tận cùng của 7^1999 là 3
Vậy chữ số tận cùng của 57^1999 là 3.
b,Ta xét chữ số tận cùng của 3^1999=(3^4)^499.27
3^1999=81^499.27
=>Chữ số tận cùng của 3^1999=1.7(Vì chữ số tận cùng của 81^499 là 1 và chữ số tận cùng của 27 là 7)
=> Chữ số tận cùng của 3^1999 là 7
Vậy chữ số tận cùng của 93^1999 là 7.
a/ chữ số tận cùng là 1
b/chữ số tận cùng là 7
Bài 1. Tìm chữ số tận cùng của các lũy thừa sau:
a) \(2^{2009}\)b) \(3^{2100}\)c) \(9^{999}\)d) \(134^{345}\)e) \(167^{421}\)Bài 2. Tìm chữ số tận cùng của các phép tính lũy thừa sau:
a) \(13^{2001} - 8^{2001}\)b) \(7^{35} - 4^{31}\)c) \(2^{1945} \times 9^{1975}\)d) \(11^{6} + 12^{6} + 13^{6} + 14^{6} + 15^{6} + 16^{6}\)Bài 3. Tìm chữ số tận cùng của các lũy thừa tăng sau: \(234^{5} , 579^{6} , 13^{400}\)
Bài 4. Cho \(n \in \mathbb{N}\), chứng minh rằng:
a) \(51^{1} + 47^{102}\) chia hết cho 10b) \(405^{1} + 2405^{1} + 1739^{1}\) chia hết cho 10c) \(74^{n} - 1\) chia hết cho 5d) \(34^{n + 1} + 2\) chia hết cho 5Bài 5. Tìm chữ số tận cùng của các tổng sau:
a) \(S=1+7+7^2+7^3+\cdots+7^{2018}+7^{2019}\)b) \(P=2^1+3^5+4^9+\cdots+2023^{8085}\)Bài 6. Tìm các số tự nhiên \(a , b\) biết: \(10^{a} + 168 = b^{2}\)
Bài 6:
Với \(a=0\), ta có \(10^0+168=1+168=169=13^2\) , do đó ta tìm được cặp \(\left(a,b\right)=\left(0,13\right)\).
Với \(a\ge1\) thì \(10^{a}\) có chữ số tận cùng là 0, do đó \(10^{a}+168\) sẽ có chữ số tận cùng là 8, trong khi vế phải \(b^2\) lại là một số chính phương không thể có chữ số tận cùng là 8, mâu thuẫn. Vậy với \(a\ge1\) thì không có cặp \(\left(a,b\right)\) thỏa mãn điều kiện đã cho.
Vậy ta tìm được cặp số \(\left(a,b\right)\) duy nhất là \(\left(0,13\right)\).
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Bài 3:
A =4 x 4 x 4 x...x 4(2023 chữ số 4)
vì 2023 : 2 = 1011 dư 1
A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)
A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\) x 4
A = \(\overline{...6}\) x 4
A = \(\overline{...4}\)
- Tìm 2 chữ số tận cùng của 2^2015
- Tìm 2 chữ số tận cùng của 7^2017
2^2015=(2^20)^100x2^15=...76^100x32768=a76xb68=c68 vậy a^2015 có tận cùng=68
7^2017=(7^8)^2008x7^9=a01^2008xb07=c07
a) Tìm chữ số tận cùng của 5^55
b) Tìm chữ số tận cùng của 10^23
c) Tìm chữ số tận cùng của 6^49
d) Tìm chữ số tận cùng của 11^11
e) Tìm chữ số tận cùng của 9^18
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1