z + 650 = 100 + 120
1. Phép chia 24 650 : 120
A. 24 650 : 120 = 25 (dư 50) C. 24 650 : 120 = 25 (dư 5)
b. 24 650 : 120 = 205 (dư 50) D. C. 24 650 : 120 = 205 (dư 5)
1. Phép chia 24 650: 120
A. 24 650: 120 = 25 (dư 50) C. 24 650: 120 = 25 (dư 5)
b. 24 650: 120 = 205 (dư 50) D. C. 24 650: 120 = 205 (dư 5)
giúp mình nha
1050 ; 120 ; 650 ; 1380 ; 400 ; 00 ; 1800 ; 1400 . Hỏi có bao nhiêu góc tù? ( tự trả lời )
100+650=???
x + 650 = 50 x 100
x + 650 = 50 x 100
x + 650 = 5000
x = 5000 - 650
x = 4350
\(x+650=50\times100\)
\(\Leftrightarrow x+650=5000\)
\(\Leftrightarrow x=5000-650\)
\(\Leftrightarrow x=4350\)
x + 100 = 500 : 2
x + 500 = 650
x +100 = 500 : 2
x+ 100 = 250
x=250-100
x= 150
x+500= 650
x= 650-500
x= 150
k giúp mik nhé
x + 100 = 500 : 2
x + 100 = 250
x = 250 - 100
x = 150
x + 500 = 600
x = 600 - 500
x = 100
K mk mk k lại
Hứa luôn
x/2=y/3=z/4 và x^2+2y^2-3z^2=-650
a) x^3/8 = y^3/64 = z^3/216 và x^2 + y^2 + z^2 = 14
b) x^3/8 = y^3/27 = z^3/64 và x^2 + 2y^2 - 3z^2 = -650
a: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
Đặt \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=k\)
=>x=k; y=2k; z=3k
\(x^2+y^2+z^2=14\)
=>\(k^2+4k^2+9k^2=14\)
=>\(14k^2=14\)
=>\(k^2=1\)
=>k=1 hoặc k=-1
TH1: k=1
=>\(x=k=1;y=2k=2\cdot1=2;z=3k=3\cdot1=3\)
TH2: k=-1
=>\(x=k=-1;y=2k=2\cdot\left(-1\right)=-2;z=3k=3\cdot\left(-1\right)=-3\)
b: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)
=>\(\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{3}\right)^3=\left(\dfrac{z}{4}\right)^3\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
=>x=2k; y=3k; z=4k
\(x^2+2y^2-3z^2=-650\)
=>\(\left(2k\right)^2+2\cdot\left(3k\right)^2-3\cdot\left(4k\right)^2=-650\)
=>\(4k^2+18k^2-3\cdot16k^2=-650\)
=>\(-26\cdot k^2=-650\)
=>\(k^2=25\)
=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)
TH1: k=5
=>\(x=2\cdot5=10;y=3\cdot5=15;z=4\cdot5=20\)
TH2: k=-5
=>\(x=2\cdot\left(-5\right)=-10;y=3\cdot\left(-5\right)=-15;z=4\cdot\left(-5\right)=-20\)
Đố ai lm đc câu này đấy:
Chứng minh rằng: \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(x\in Z\right)\)
\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)
\(=3^x\left(3^1+3^2+3^3+3^4\right)+...+3^{x+96}\left(3^1+3^2+3^3+3^4\right)=3^x.120+3^{x+4}.120+...+3^{x+96}.120=120\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)