Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Dũng
Xem chi tiết
Nguyễn Nam Dương
18 tháng 1 2022 lúc 17:44

Xét \(x\le y\le z\) vì x,y,z nguyên dương

\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)

\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )

- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))

- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))

Vậy......................................

Khách vãng lai đã xóa
Nguyễn Nam Dương
18 tháng 1 2022 lúc 17:43

 \(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
\(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Khách vãng lai đã xóa
Nguyễn Đăng Nhân
18 tháng 1 2022 lúc 17:44

Ta có: \(x+y+z=xyz\)

\(\Leftrightarrow\left(x\cdot100\right)+\left(y\cdot10\right)+\left(z\cdot1\right)=xyz\)

\(\Rightarrow z=0,1,2,3,4,5,6,7,8,9\)

\(\Rightarrow y=0,1,2,3,4,5,6,7,8,9\)

\(\Rightarrow x=1,2,3,4,5,6,7,8,9\)

Khách vãng lai đã xóa
Lê Thành An
Xem chi tiết
Nguyễn Linh Chi
15 tháng 12 2019 lúc 19:18

Không mất tính tổng quát giả sử : 0 < x\(\le\)y\(\le\)z.

Ta có: xyz = 2(x + y + z ) \(\le\)2 ( z + z + z ) = 6 z

Và xy = 2 ( x + y + z ) : z 

=> xyz \(\le\)6z

=> xy \(\le\)6

vì x, y là số nguyên dương

=> xy \(\in\){1; 2; 3; 4; 5; 6} với x\(\le\)y

+) TH1 : xy = 1 => x = y = 1

=> z = 2 ( 2 + z ) => z = 4 + 2z => z = -4 loại

+) TH2: xy = 2 => x = 1; y = 2 

=> 2 z = 2 ( 1 + 2 + z )  => 0z = 6 loại

+) TH3: xy = 3 => x = 1; y = 3

=> 3z = 2 ( 1 + 3 + z ) => z = 8  ( thỏa mãn )

+) Th4: xy = 4 => x =2 ; y = 2 hoặc x = 1; y =4

Với x =2; y = 2 => 4z =2 (  4+ z)  => z = 4 ( thỏa mãn )

Với x = 1; y = 4; => 4z = 2 ( 5 + z ) => z = 5 ( thỏa mãn)

Em làm tiếp nhé!

Khách vãng lai đã xóa
Trương Tuệ Nga
Xem chi tiết
Tạ Uyên
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
OH-YEAH^^
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 18:23

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị

Nguyễn Tất Anh Quân
Xem chi tiết
Nguyễn Thị Ngọc Minh
22 tháng 4 2017 lúc 11:15

x = 100

y = 20

z = 3

Nguyễn Gia Triệu
14 tháng 2 2018 lúc 12:08

x=1

y=2

z=3

lehongphong
4 tháng 5 2018 lúc 21:32

x=50

y=65

z=55

Trịnh Xuân Minh
Xem chi tiết