Tìm số nguyên tố a thỏa mãn 6+a; 8+a; 12+a hay 14+a đều là số nguyên tố.
Tìm các số nguyên tố a, b thỏa mãn điều kiện: 5/a - b/3 = 1/6
a) Tìm cặp số nguyên (x;y) thỏa mãn:x-y-6=2xy
b) Tìm mọi số nguyên tố x,y thỏa mãn: x2- 2y2=1
1. CHo số nguyên tố p thỏa mãn p+6 cũng là số nguyên tố . Chứng minh \(p^2+2021\) là hợp số
2.Tìm tất cả các số tự nhiên a để \(a^2+3a\) là số chính phương
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
cho số nguyên tố p thỏa mãn 1/a+1/b=1/p (a;b E N*) tìm số nguyên tố p thỏa mãn để a hoặc b là số chính phương
giải chi tiết mình sẽ tick cho thật nhìu
1) Có những cặp số nguyên tố nào thỏa mãn xy = x + y
2)Tìm tập hợp A các số nguyên dương thỏa mãn
x(1/1.2+1/2.3+1/3.4+...+1/6.7) < hoặc = 1 1/6
Bài 1:Tìm số nguyên tố p thỏa mãn:
p+2 ;p+6 ; p+14 ; p+18 đều là số nguyên tố
Lời giải:
Nếu $p\vdots 5$ thì $p=5$. Thay vô thấy thỏa mãn
Nếu $p=5k+1$ với $k$ nguyên thì $p+14=5k+15\vdots 5$. Mà $p+14>5$ nên $p+14$ là hợp số (loại)
Nếu $p=5k+2$ với $k$ nguyên thì $p+18=5k+20\vdots 5$. Mà $p+18>5$ nên $p+18$ là hợp số (loại)
Nếu $p=5k+3$ với $k$ là nguyên. Khi $k=0$ thì $p=3$ (thử vô không thỏa mãn). Khi $k>0$ thì thì $p+2=5k+5\vdots 5$, mà $p+2>3$ nên $p+2$ là hợp số (loại)
Nếu $p=5k+4$ với $k$ nguyên thì $p+6=5k+10\vdots 5$. Mà $p+6>5$ nên $p+6$ là hợp số (loại)
Vậy $p=5$ là đáp án duy nhất.
Bài 1:
a) Tìm số nguyên tố thỏa mãn : (p+4), (p+8) cũng là các số nguyên .
b) Tìm số hữu tỉ a thỏa mãn : 2a + 5a là số tự nhiên và là số chính phương.
Giúp mình nha mọi người.
Cảm ơn bạn Phan Thị Nhã Uyên ~~~
Tìm tất cả các số nguyên tố a, b và các số nguyên dương c thỏa mãn:
a) a(a - 3) + b(b + 3) = c(c + 6)
b) a(a -3 ) + b(b + 3) = c(c - 3)
tìm tất cả các số nguyên tố a,b,c lớn hơn 3 thỏa mãn b=a+d;c=b+d chứng minh rằng d chia hết cho 6