tìm điều kiện của x để phân thức xác định : \(\frac{-5}{\frac{x-2}{3x+1}+1}\)
cho phân thức \(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a) Tìm điều kiện của x để phân thức được xác định
b)Tìm x để giá trị phân thức bằng 10
a)\(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b)\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=10\)\(\Leftrightarrow\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=10\)
\(\Leftrightarrow\frac{3x}{2x-6}=10\)\(\Leftrightarrow3x=10\left(2x-6\right)\)
\(\Leftrightarrow3x=20x-60\)\(\Leftrightarrow17x=60\Leftrightarrow x=\frac{60}{17}\)
Cho phân thức: \(P=\frac{3x^2+3x}{\left(x+1\right).\left(2X-6\right)}\)
a, Tìm điều kiện của x để P xác định
b, Tìm giá trị của x để phân thức bằng 1
Tìm điều kiện của x để phân thức sau xác định:
1) \(\dfrac{5-x}{x^2-3x}\)
2) \(\dfrac{3x}{2x+3}\)
1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)
2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)
Cho phân thức \(M=\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x+1}\right]:\frac{x^2+x}{x^3+x}\)
a) Tìm điều kiện để giá trị của biểu thức xác định
b) tìm giá trị của x để biểu thức bằng 0
c) Tìm x khi giá trị tuyệt đối của M=1
cho phân thức \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}\)
a/ tìm điều kiện của x để giá trị của phân thức A được xác định
b/ tìm x để giá trị của phân thức bằng 3
a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)
\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)
b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
Để \(A=3\) thì :
\(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
Chúc bạn học tốt
Cho phân thức \(\frac{5x+5}{2x^2+2x}\)
a) tìm điều kiện của x để giá trị của phân thức xác định
b) tìm x để giá trị phân thức bằng 1
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b) Để phân thức bằng 1 thì :
\(5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy.......
Phân thức xác định
\(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định
a) để phân thức xác định <=> 2x2 + 2x khác 0 hay 2x ( x + 1 ) khác 0 => x khác -2x - 1
\(\frac{3x^2-x}{9x^2-6x+1}\)
a) tìm điều kiện xác định của phân thức
b)
Tính giá trị của phân thức tại x=8
c) TÌm x để giá trị của phân thức nhận giá trị âm
a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
A xác định khi 3x-1 #0 <=> x khác 1/3
b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)
c/ A\(\le0\)Khi:
+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)
+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp
Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)
a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)
b, Ta thay x=8
\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)
c, x<0
\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)
mấy bạn kia dùng dấu \("\le"\) là sai nhé
\(c)\) \(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}< 0\)
TH1 : \(\hept{\begin{cases}x< 0\\3x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>\frac{1}{3}\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x>0\\3x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}}\Leftrightarrow0< x< \frac{1}{3}}\)
Vậy để phân thức âm thì \(0< x< \frac{1}{3}\)
PS : giải thích dùm 1 người, ko copy
cho phân thức \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}\)
a/ tìm điều kiện của x để giá trị của phân thức A được xác định
b/ tìm x để giá trị của phân thức bằng 3
a) ĐKXĐ:\(x\ne-1,x\ne\frac{3}{2}\)
b)\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
để A = 3 thì \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=\frac{-3}{2}\)
DKXD : \(x+1\ne0\Rightarrow x\ne-1,2x-3\ne0\Rightarrow2x\ne3\Rightarrow x\ne\frac{3}{2}\)
\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=3\Rightarrow A==\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(\left(x+1\right)\left(2x-3\right)\right)}{\left(x+1\right)\left(2x-3\right)}\)
\(\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(2x^2-3x-2x+3\right)}{\left(x+1\right)\left(2x-3\right)}\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{6x^2-9x-6x+9}{\left(x+1\right)\left(2x-3\right)}\)\(\Rightarrow A=2x^2-3x=6x^2-15x+9\Rightarrow A=0=4x^2-12x+9\Rightarrow A=0=\left(2x-3\right)^2\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\left(TMDKXD\right)\)
t i c k cho mình 1 cái nha mình bị trừ 50đ ùi hic hic ủng hộ nhé
Cho phân thức : P = \(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a, Tìm điều kiện của x để P được xác định
b, Tìm giá trị của x để phân thức bằng 1
- Có ai giúp mk làm vs
a) P xác định <=> \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b)\(P=\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\Leftrightarrow3x^2+3x=\left(x+1\right)\left(2x-6\right)\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)\left(2x-6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-2x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
Vì \(x\ne-1\Leftrightarrow x+1\ne0\Rightarrow x+6=0\Leftrightarrow x=-6\)
Vậy ........
a, ĐKXĐ: x\(\ne\)-1, x\(\ne\)3
b,ta có: P =\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)=\(\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}\)\(=\frac{3x}{2x-6}\)
Để P = 1
=>\(\frac{3x}{2x-6}=1\)
=> 2x - 6 = 3x
=> 2x - 3x = 6
=> -x =6
=>x = -6