Tìm m,n thuộc N để \(3^{3m^2+6n-61}+4\)la số nguyên tố
tìm m,n thuộc N để \(3^{3m^2+6n-61}+4\)
là số nguyên tố
Đặt \(\hept{\begin{cases}A=3^{3m^2+6n-61}+4\\t=3m^2+6n-61\end{cases}}\)
Ta có t chia cho 3 dư 2 nên t = 3k + 2
\(A=3^{3k+2}+4=9.27^k+4\)
Ta có 27 chia 13 dư 1 nên \(9.27^k\)chia cho 13 dư 9
\(\Rightarrow9.27^k+4\) chia hết cho 13
Vậy A = 13
=> k = 0 => t = 2
=> 3m2 + 6n - 61 = 2
<=> m2 + 2n = 21
Ta nhận xét là m2 là bình phương của số lẻ nhỏ hơn 21
=> m2 = (1, 9)
=> m = (1; 3)
=> n = (10; 6)
Tìm số tự nhiên m, n thỏa mãn \(3^{3m^2+6n-61}+4\) là số nguyên tố
Tìm n,m là số tự nhiên sao cho A là số nguyên tố:
\(A=3^{3m^2+6n-61}+4\)
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)
Tìm m,n c N để:
3 9mm + 6n - 61 + 4 là số nguyên tố
tìm n thuộc N để n^4-6n^3+12n^2-12n+20 là số nguyên tố
Tìm tất cả các số tự nhiên m,n sao cho x3m^2++6n-61 +4 à số nguyên tố.
Tìm tất cả các số m,n để \(3^{3m^2+6n-61}+4\)là số chính phương
tìm số n thuộc N để n^2 + 6n là số nguyên tố
Ta có: \(n^2+6n=n\left(n+6\right)\)
Vì SNT chỉ có 2 ước dương duy nhất là 1 và chính nó nên ta xét các TH sau:
+ Nếu: \(n=1\Rightarrow n+6=7\)
=> \(n^2+6n=7\left(tm\right)\)
+ Nếu: \(n+6=1\Rightarrow n=-5\) (không thỏa mãn vì âm)
Còn nếu xét các TH khác ta luôn có thể thấy \(n\left(n+6\right)\) là tích 2 STN cách nhau 6 đơn vị
=> không thể là SNT
Vậy n = 1