Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Kim Thanh
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 8 2021 lúc 19:06

a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)

b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)

c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)

Tô Hà Thu
31 tháng 8 2021 lúc 19:10

\(A=4+4^2+4^3+.....+4^{60}\)

\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....4^{57}.\left(1+4+4^2\right)\)

\(A\)\(=21+4^3.21+...4^{57}.21\)

\(\Rightarrow A⋮4;21\)

ko chia hết cho 5

 

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 21:46

a:Ta có: \(A=4+4^2+4^3+...+4^{60}\)

\(=4\left(1+4+4^2+...+4^{59}\right)⋮4\)

b: Ta có: \(A=4+4^2+4^3+...+4^{60}\)

\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)

\(=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\)

Nguyễn Quỳnh Khánh Hương
Xem chi tiết
nguyen van huy
29 tháng 6 2017 lúc 19:59

1) A = 120a + 36b

=> A = 12.10.a + 12.3.b

=> A = 12.(10a+3b)

Do 12.(10a+3b) \(⋮\)12

nên 120a+36b \(⋮\)12

2) Gọi (2a+7b) là (1)

         (4a+2b) là (2)

Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)

Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3

Hay 4a+2b chia hết cho 3 

3) Gọi (a+b) là (1)

          (a+3b) là (2)

Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2

Hay (a+3b) chia hết cho 2

Mèo Con
Xem chi tiết
ngonhuminh
4 tháng 1 2017 lúc 16:30

Mình chỉ làm được ý 3 thôi: 

Asuka Kurashina
4 tháng 1 2017 lúc 16:40

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Toàn Quyền Nguyễn
6 tháng 1 2017 lúc 19:53

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 2+ 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Mai Phương Uyên
Xem chi tiết

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

b, B = 102010 + 14 

Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3

B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2 

Lê Duy Mạnh
Xem chi tiết
sumi yuri
6 tháng 1 2015 lúc 16:25

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

Nguyễn Minh Quang 123
10 tháng 7 2015 lúc 22:09

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

Nguyễn Đức Thắng
24 tháng 1 2016 lúc 15:26

a) a lẻ suy ra a+5 chia hết cho 2

a chẵn suy ra a+8 chia hết cho 2

Nguyễn Ngọc Bảo Trân
Xem chi tiết
Feliks Zemdegs
3 tháng 10 2015 lúc 17:35

1)A=3+32+33+...+32008

A=(3+32)+(33+34)+...+(32007+32008)

A=3(1+3)+33(1+3)+...+32007(1+3)

A=3.4+33.4+...+32007.4

A=4(3+....+32007) chia hết cho 4

 

Tran Thi Mai Phuong
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Kim Ngọc Phạm
16 tháng 2 2022 lúc 8:38

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

Nguyễn Hoàng Yến Nguyên
Xem chi tiết
Nguyễn Ngọc Bảo Trân
Xem chi tiết
Bùi Hồng Thắm
2 tháng 10 2015 lúc 19:51

1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)

A= 3.4+3^3.4+...+3^2007 .4

A= 4(3+3^3+...+3^2008)=>ĐPCM

2, theo đề bài :a+b chia hết cho 2

ta có : a+3b=a+b+2b

vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM