A=a^2016+b^2016+c^2016+d^2016/(a+b+c+d)^2016
Biet ac=b^2 : ac=d^2
Cho a,b,c,d khác 0 thỏa: a+b=c+d và a^2+b^2=c^2=d^2
Cm a^2016+b^2016=c^2016+d^2016
cho\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
tính A=\(\frac{a^{2016}}{b^{2016}}+\frac{b^{2016}}{c^{2016}}+\frac{c^{2016}}{d^{2016}}+\frac{d^{2016}}{a^{2016}}\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)Thao vào A ta được :
\(A=\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}=1+1+1+1=4\)
cho a+b=c+d ;a2+b2=c2+d2.chứng minh a2016+b2016=c2016+d2016
Cho các số a,b,c,d khác 0. Tính
T= x^2017 + y^2017+z^2017+t^2017
Biết x,y,z,t thỏa mãn :
x^2016+y^2016+z^2016+t^2016/a^2+b^2+c^2+d^2=x^2016/a^2+y^2016/b^2+z^2016/c^2+t^2016/d^2
((a-b)/(c-d))^2016=(a^2016+b^2016)/(c^2016+d^2016)
Cho \(\frac{a}{b}=\frac{c}{d}\) Chứng minh \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=1\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)
(áp dụng tính chất dãy tỉ số bằng nhau)
Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)
\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)
K=a^2016+b^2016+c^2016+d^2016:(a+b+c+d)^2016
Cho a,b,c là các số thực thỏa mãn: a+b=c+d và a2+b2=c2+d2. Chứng minh
a2016+b2016=c2016+d2016
Cho các số a,b,c,d khác 0. Tính \(T=x^{2017}+y^{2017}+z^{2017}+t^{2017}\)
Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2016}+y^{2016}+z^{2016}+t^{2016}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2016}}{a^2}+\dfrac{y^{2016}}{b^2}+\dfrac{z^{2016}}{c^2}+\dfrac{t^{2016}}{d^2}\)