Tìm n€N để 3n+1 chia hết cho 7
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
Tìm n thuộc N để
a) n+8 chia hết cho n
b) 3n+5 chia hết cho n
c) 3n+7 chia hết cho n+2
d) 5n+9 chia hết cho n+1
Tìm n thuộc N để:
a) n + 6 chia hết cho n
b) n + 5 chia hết cho n + 1
c) n2 + 2n + 7 chia hết cho n + 2
d) 2n + 1 chia hết cho 16 - 3n
e) 3n + 2 chia hết cho n - 1
f) 3n + 4 chia hết cho n - 1
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
b) n + 5 chia hết cho n + 1
=> (n + 1) + 4 chia hết cho n+ 1
Mà n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 \(\in\){-1;1;-5;5}
=> n \(\in\){-2;0;-6;4}
Mà n thuộc N
=> n \(\in\){0;4}
bài 1: tìm n thuộc z để
1) n+7 chia hết cho n+3
2) 2n+5 chia hết cho n+3
3) 3n+1 chia hết cho 1-2n
4) 3n+2 chia hết cho 11-5n
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
3) Đặt A = 3n + 1
=> 2A = 6n + 2 = -3(1 - 2n) + 5
Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n
Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n
=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}
Với: +)1 - 2n = 1 => 2n = 0 => n = 0
+)1 - 2n = -1 => 2n = 2 => n = 1
+) 1 - 2n = 5=> 2n = -4 => n = -2
+) 1 - 2n = -5 => 2n = 6 => n = 3
3) Đặt B = 3n + 2
=> 5B = 15n + 10 = -3(11 - 5n) + 21
Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B \(⋮\)11 - 5n
Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n
=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}
Lập bảng :
11-5n | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 2 | 12/5(ktm) | 8/5(ktm) | 14/5(ktm) | 4/5(ktm) | 18/5(ktm) | -2 | 32(ktm) |
Vậy ...
Tìm giá trị nguyên của n
a/ 7 chia hết cho n+2
b/ n+1 chia hết cho n-3
c/ Để giá trị của biểu thức \(3n^3+10n^2-5\) chia hết cho giá trị của biểu thức 3n+1
d/ Để giá trị của biểu thức \(10n^2+n-10\) chia hết cho giá trị của biểu thức n-1
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
tìm n thuộc N để 3n+1 chia hết cho 7
3n + 7 = 3n - 3 + 10 = 3(n - 1) + 10
Để (3n + 7) ⋮ (n - 1) thì 10 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}
⇒ n ∈ {-9; -4; -1; 0; 2; 3; 6; 11}
Mà n là số tự nhiên
⇒ n ∈ {0; 2; 3; 6; 11}
Tìm số tự nhiên n để :
a, 2n + 7 chia hết cho n + 1
b, 3n + 9 chia hết cho n - 1
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$