Tim Min B = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
tim min y= (x^4+x^2+5)/(x^4+2x+1)
choP=(1/(x-2)-x^2/(8-x^3)*(x^2+2x+4)/(x+2)0/1/(x^2-4) tim DKXD va rut gon b tim Min p c tim x nguyen de p chia het cho x^2+1
1.tìm max A=(\(\frac{x}{x+2020}\))\(^2\) với x>0
2. tìm min C= \(\frac{\left(4x+1\right)\left(4+x\right)}{x}\) với x dương
3.cho 3a+5b=12. tìmmin B=ab
4.tìm min \(x^2-x+4+\frac{1}{x^2-x}\)
5. cho x,y là 2 số thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y}{4}=4\).tìm min max của xy
6. cho a,b>0 và a+b=1. tìm min M=\(\left(1+\frac{1}{a}\right)^2\left(1+\frac{1}{b}\right)^2\)
tim x
a) / x+\(\frac{4}{15}\)/ - / -3,75 / = - / -2,15 /
b) / 4 + 2x / = - 4x
c) / x - 2 / - / 2x + 3 / = x - 1
d) / x - 2 / + / x - 3 / + / x - 4 / = 2
e) / 2x - 1 / + / 2x - 5 / = 4
a) /x+\(\frac{4}{15}\)/ - / -3,75/ = -2,15
=> \(\orbr{\begin{cases}x+\frac{4}{15}+3,75=-2,15\\x+\frac{4}{15}+3,75=2,15\end{cases}}\)
=> ....v.....v giải ra ( từng th )
bài khác tương tự
ai biet tra loi cho mik voi mik dag rat can gap
chi can lam bai c,d,e la duoc
nhung bai con lai mik tu lam duoc
Tìm min, max và tập giá trị của hàm số:
1, y = 3sin(2x + \(\frac{\pi}{4}\) ) - 1
2, y = -5\(cos^2\) x + 3
3, y = \(\frac{5}{3\cos x+4}\)
4, y = \(\sin^2\)x - 4sinx + 8
1: Ta có: \(-1<=\sin\left(2x+\frac{\pi}{4}\right)\le1\)
=>\(-3\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)\le3\)
=>\(-3-1\le3\cdot\sin\left(2x+\frac{\pi}{4}\right)-1\le3-1\)
=>-4<=y<=2
=>Tập giá trị là T=[-4;2]
\(y_{\min}=-4\) khi \(\sin\left(2x+\frac{\pi}{4}\right)=-1\)
=>\(2x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\)
=>\(2x=-\frac34\pi+k2\pi\)
=>\(x=-\frac38\pi+k\pi\)
2: \(0\le cos^2x\le1\)
=>\(0\ge-5\cdot cos^2x\ge-5\)
=>\(0+3\ge-5\cdot cos^2x+3\ge-5+3\)
=>3>=y>=-2
=>Tập giá trị là T=[-2;3]
\(y_{\max}=3\) khi \(cos^2x=1\)
=>\(\sin^2x=0\)
=>sin x=0
=>\(x=k\pi\)
\(y_{\min}=-2\) khi \(cos^2x=0\)
=>cosx=0
=>\(x=\frac{k\pi}{2}\)
3: \(-1\le cosx\le1\)
=>\(-3\le3\cdot cosx\le3\)
=>\(-3+4\le3\cdot cosx+4\le3+4\)
=>\(1\le3\cdot cosx+4\le7\)
=>\(\frac51\ge\frac{5}{3\cdot cosx+4}\ge\frac57\)
=>\(\frac57\le y\le5\)
=>Tập giá trị là \(T=\left\lbrack\frac57;5\right\rbrack\)
\(y_{\min}=\frac57\) khi cosx=1
=>\(x=k2\pi\)
\(y_{\max}=5\) khi cosx=-1
=>\(x=\pi+k2\pi\)
4: \(y=\sin^2x-4\cdot\sin x+8\)
\(=\sin^2x-4\cdot\sin x+4+4\)
\(=\left(\sin x-2\right)^2+4\)
Ta có: \(-1\le\sin x\le1\)
=>\(-1-2\le\sin x-2\le1-2\)
=>\(-3\le\sin x-2\le-1\)
=>\(1\le\left(\sin x-2\right)^2\le9\)
=>\(5\le\left(\sin x-2\right)^2+4\le13\)
=>5<=y<=13
=>Tập giá trị là T=[5;13]
\(y_{\min}=5\) khi sin x-2=-1
=>sin x=1
=>\(x=\frac{\pi}{2}+k2\pi\)
\(y_{\max}\) =13 khi sin x-2=-3
=>sin x=-1
=>\(x=-\frac{\pi}{2}+k2\pi\)
Tìm min:
a, \(A=x+\frac{x-1}{\sqrt{x^2-2x}}\) với x>2
b, \(B=x\sqrt{x}-6x+13\sqrt{x}+\frac{4}{\sqrt{x}}\)
c,\(C=\frac{1-4\sqrt{x}}{2x+1}-\frac{2x}{x^2+1}\)
Tìm Min
\(A=x+\frac{x-1}{\sqrt{x^2-2x}}\left(x>2\right)\)
\(B=x\sqrt{x}-6x+13\sqrt{x}+\frac{4}{\sqrt{x}}\)
\(C=\frac{1-4\sqrt{x}}{2x+1}-\frac{2x}{x^2+1}\)
B1:Tìm min A= \(\frac{x^2-2x+9}{x^2}\)
B2: Tim min B=\(\frac{12}{x-1}\)+ \(\frac{x}{3}\) với x\(\ge\)1
B3: Tìm min C= /x-10/+/x-11/+/x-12/+/x-13/
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Tim min, max cua:
\(A=\frac{x^2+y^2}{x^2+2xy+y^2}\)
\(B=\frac{x^2}{x^4+1}\)
\(C=(x^2+\frac{1}{y^2})(y^2+\frac{1}{x^2})\)