chứng minh rằng nếu n thuộc Z thì n^2 + 11n +39 không chia hết cho 49
Chứng minh rằng với mọi n thuộc Z :
a) n^3 -n+4 không chia hết cho 3
b) n^2 +11n +39 không chia hết cho 49
c) A(n) = n( n^2+1)(n^2+4) chia hết cho 5
chứng minh rằng với mọi số nguyên n
a) n2+11n+39 không chia hết cho 49
b) n2+n+1 không chia hết cho 9
a) Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng \(n^2+11n+39\) không chia hết cho 49 với mọi số tự nhiên n .
chứng minh nó không chia hết cho 49 là được. dễ mà
Đặt A=n2+11n+39
Giả sử n2+11n+39 chia hết cho 49 thì A chia hết cho 49 => A cũng chia hết cho 7
Ta có A=n2+11n+39=n2+9n+2n+18+21 = n(n+9)+2(n+9)+21 =(n+9)(n+2)+21
Nhận thấy( n+9)-(n+2)=7
=>Đồng thời (n+9) và (n+2) chia hết cho 7 => (n+9)(n+2) chia hết cho 49
Ta cũng có A chia hết cho 49 mà 21 ko chia hết cho 49 ( vô lí )
Vậy n2+11n+39 ko chia hết cho 49
Gỉa sử n2 + 11n + 39 \(⋮49\)
\(\Rightarrow\)n2 + 11n + 39 \(⋮7\)
\(\Rightarrow\)n2 + 11n + 39 - 7n - 35 \(⋮7\)
\(\Rightarrow\)n2 + 4n + 4 \(⋮7\)
\(\Rightarrow\)(n + 2)2 \(⋮7\)
\(\Rightarrow\)n + 2 \(⋮7\)
Đặt n + 2 = 7t
\(\Rightarrow\)n2 + 11n + 39 = (7t - 2)2 + 11(7t - 2) + 39
\(\Leftrightarrow\)n2 + 11n + 39 = 49t2 + 49t + 21 ko chia hết cho 49
Điều này mâu thuẫn với điều ta giả sử.
Vậy n2 + 11n + 39 ko chia hết cho 49
chứng minh với mọi số nguyên n thì n^2+11n+39 không chia hết cho `39
bạn sai đề rồi:
chứng minh với mọi số nguyên n thì n^2+11n+39 không chia hết cho 49
Ta có:
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
https://vn.answers.yahoo.com/question/index?qid=20091017203207AAoSfKD
ban vao link nay thi se co cau tra loi
Chứng minh rằng với mọi số nguyên n thì \(n^2+11n+39\) không chia hết cho 49.
Giả sử \(n^2+11n+39⋮49\) \(\Rightarrow4n^2+44n+156⋮49\)
\(\Rightarrow4n^2+44n+156⋮7\) \(\Leftrightarrow4n^2+2.2n.11+121+35⋮7\)
\(\Leftrightarrow\left(2n+11\right)^2+35⋮7\) mà \(35⋮7\) nên \(\left(2n+11\right)^2⋮7\) mà 7 là số nguyên tố
\(\Rightarrow\left(2n+11\right)^2⋮49\) \(\Rightarrow4n^2+4n+121⋮49\) mà
\(4n^2+4n+121+35⋮49\) nên \(35⋮49\) => vô lý vậy điều giả sử là sai
vậy n^2+11n+39 không chia hết cho 49
Chứng minh rằng :Với Vn\(\in N\) thì n2+11n+39 không chia hết cho 39.
Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
a) Ta có n3 - n + 4
= n(n2 - 1) + 4
= (n - 1)n(n + 1) + 4
Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp)
mà 4 \(⋮̸\)3
=> n3 - n + 4 không chia hết cho 3
Chứng minh rằng (n-2)*(n+5)+21 không chia hết cho 49 ( với n thuộc z)
a, Tìm giá trị nhỏ nhất của biểu thức P=x4+x2-6x+9
b, Chứng minh rằng n2+11n+39 không chia hết cho 49 với mọi số tự nhiên n