K=a^2016+b^2016+c^2016+d^2016:(a+b+c+d)^2016
cho\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
tính A=\(\frac{a^{2016}}{b^{2016}}+\frac{b^{2016}}{c^{2016}}+\frac{c^{2016}}{d^{2016}}+\frac{d^{2016}}{a^{2016}}\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)Thao vào A ta được :
\(A=\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}+\frac{a^{2016}}{a^{2016}}=1+1+1+1=4\)
((a-b)/(c-d))^2016=(a^2016+b^2016)/(c^2016+d^2016)
Cho \(\frac{a}{b}=\frac{c}{d}\) Chứng minh \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=1\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{d}{b}=\frac{c}{a}\Leftrightarrow\frac{d^{2016}}{b^{2016}}=\frac{c^{2016}}{a^{2016}}=\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}=\frac{c^{2016}+d^{2016}}{a^{2016}+b^{2016}}\)
(áp dụng tính chất dãy tỉ số bằng nhau)
Suy ra \(\frac{a^{2016}+b^{2016}}{a^{2016}-b^{2016}}.\frac{c^{2016}-d^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}.\frac{c^{2016}-d^{2016}}{a^{2016}-b^{2016}}\)
\(=\frac{b^{2016}}{d^{2016}}.\frac{d^{2016}}{b^{2016}}=1\)
Cho a/b=c/d C/M (a+b)/c+d)2016=a2016+b2016/c2016+d2016
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}=\left(\frac{a+b}{c+d}\right)^{2016}\left(1\right)\)
\(\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}=\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\left(2\right)\)
Từ (1) và (2) => đpcm
A=a^2016+b^2016+c^2016+d^2016/(a+b+c+d)^2016
Biet ac=b^2 : ac=d^2
cho a/b =c/d .Chứng minh rằng
a) a2016 +c2016/ b2016+ d2016= (a-c)2016/ b-d) 2016
dễ mà
vì a/b=c/d (1)
=>a/b=c/d=a-c/b-d=(a-c)2016/(b-d)2016(*)
cũng từ (1) =>a/b=c/d=a2016/b2016=c2016/d2016=a2016+c2016/b2016+d2016 (**)
từ (*) và (**) => ............( bạn tự vt nha)
Cho a,b,c,d khác 0 thỏa: a+b=c+d và a^2+b^2=c^2=d^2
Cm a^2016+b^2016=c^2016+d^2016
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
Cho \(\frac{a^{2106}+b^{2016}}{c^{2016}+d^{2016}}\)= \(\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)Chứng minh rằng \(\frac{a}{b}\)= \(\pm\frac{c}{d}\)
\(\Leftrightarrow\left(a^{2016}+b^{2016}\right).\left(c^{2016}-d^{2016}\right)=\left(a^{2016}-b^{2016}\right).\left(c^{2016}+d^{2016}\right)\)
\(\Leftrightarrow ac^{2016}-ad^{2016}+bc^{2016}-bd^{2016}=ac^{2016}+ad^{2016}-bc^{2016}-bd^{2016}\)
\(\Leftrightarrow-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\)
nếu \(-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}=0\)
\(\Rightarrow ad^{2016}-bc^{2016}=0\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\left(1\right)\)
nếu \(\text{}-\left(ad^{2016}-bc^{2016}\right)=ad^{2016}-bc^{2016}\ne0\Rightarrow ad=-bc\Rightarrow\frac{a}{b}=-\frac{c}{d}\left(2\right)\)
từ (1) và (2) => đpcm