Cho tam giác DEF,biết EF=8cm,DE=5cm
a)Vẽ đường cao DH.Tính độ dài HE và HF
Cho tam giác DEF vuông tại D, có DE = 6cm, DF = 8cm. Đường cao AH
a) Chứng minh tam giác DEF đồng dạng tam giác HDF
b) tính độ dài các đoạn thẳng EF, HE, HF
cho tam giác DEf biết DE =6cm ,DF=8cm và Ef=10cm
a)chứng minh DEF là tam giác vuông
B)vẽ đường cao DK hãy tính DK,FK
C)giải tam giác vuông EDK
D)vẽ phân giác trong Em của DEF tính độ dài các đoạn thẳng MD MF ME
giúp mình với mọi người ơi
a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)
nên ΔDEF vuông tại D
b: Xét ΔDEF vuông tại D có DK là đường cao
nên \(\left\{{}\begin{matrix}DK\cdot FE=DE\cdot DF\\DF^2=FK\cdot FE\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DK=4.8\left(cm\right)\\FK=6.4\left(cm\right)\end{matrix}\right.\)
Cho tam giác DEF, biết de=6cm ,df=8cm, ef=10cm.
a)Cm tam giác def là tam giác vuông
b)Vẽ đường cao dk.tính dk,fk
c)giải tam giác vuông edk
d)Vẽ phân giác dm.tính các độ dài me,mf.
e)tính sinF trong 2 tam giác vuông dfk và def.Từ dó suy ra ed.df=dk.ef
(kết quả về góc làm trọn đén phút,về canhjk làm tròn đến chữ số thập phân thứ 3)
Cho ∆Def vuong tại D có DE = 3cm , EF vẽ đường cao AH d k đường phân giác cy k thuộc EF được k vẽ kh vuông góc với df a tính độ dài EF chứng minh rằng tam giác DEF đồng dạng với tam giác HKF và DE.HF = DF.HK c, tính độ dài DK , KF ,KH
Đường cao AH hay DK vậy bạn?
Cho tam giác DEF vuông tại D, đường cao DI. Biết DF/EF=4/5 , DE = 18 cm . Giải tam giác DEF và tính độ dài DI
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)
cho tam giác cân DEF (DE=DF).Gọi N và M lần lượt là trung điểm của DE và DF,kẻ DH vuông góc với EF tại H a) CM HE=HF b) giả sử DE=DF=5cm,EF=8cm.Tính độ dài đoạn DH
a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)
\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)
mà DE=DF(ΔDEF cân tại D)
nên DN=DM
Xét ΔDNH vuông tại H và ΔDMH vuông tại M có
DN=DM(cmt)
DH chung
Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)
hay \(\widehat{EDH}=\widehat{FDH}\)
Xét ΔEDH và ΔFDH có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDH}=\widehat{FDH}\)(cmt)
DH chung
Do đó: ΔEDH=ΔFDH(c-g-c)
Suy ra: HE=HF(Hai cạnh tương ứng)
Cho tam giác DEF biết DE = 6 cm, DF = 8 cm và EF = 10 cm
a, Chứng minh DEF là tam giác vuông
b, Vẽ đường cao DK. Hãy tính DK, FK
c, Giải tam giác vuông EDK
d, Vẽ phân giác trong EM của DEF. Tính các độ dài các đoạn thẳng MD, MF, ME
e, Tính sinE trong các tam giác vuông DFK và DEF
f, Từ đó suy ra ED.DF = DK.EF
a, Ta có ∆DEF vuông vì D E 2 + D F 2 = F E 2
b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm
K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '
d, Tìm được DM=3cm, FM=5cm và EM = 3 5 cm
e, f, Ta có: sin D F K ^ = D K D F ; sin D F E ^ = D E E F
=> D K D F = D E E F => ED.DF = DK.EF
Cho tam giác DEF vuông tại D có đường cao DH. Biết DE = 30cm; HF = 32cm. Tính độ dài DH; EH.
Hình tự vẽ nha bạn
Xét tam giác EDF vuông tại D
Áp dụng hệ thức lượng trong tam giác vuông có
* ED2 = EH.HF
Thay số: 302 = EH.32
=> EH = 28,125cm
* DH2 = EH.HF
Thay số DH2 = 28,125 . 32 => DH = 30cm
Cho tam giác DEF vuông tại D , đường cao DH. Cho biét DE = 7 cm ; EF = 25cm.a/ Tính độ dài các đoạn thẳng DF , DH , EH , HF. b/ Kẻ HM ⊥ DE và HN ⊥ DF . Tính diện tích tứ giác EMNF. (Làm tròn đến hai chữ số thập phân)
Bài 4: Cho tam giác ABC. Gọi D là trung điểm của AB, E là trung điểm của BC. Biết AC = 8cm. DE Tính
Bài 5: Cho tam giác ABC vuông tại A (AB<AC), đường cao AH Tử H vẽ HE và HF lần lượt vuông góc với AB và AC (E = AB Fe AD.
a) Chứng minh AH = EF b) Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tử giác EHKF là hinh binh hành