Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tuyên lương
Xem chi tiết
Amano Ichigo
Xem chi tiết
Lê Diêu
25 tháng 4 2019 lúc 6:52

\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

\(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

=> A < B

hùng châu mạnh hào
Xem chi tiết
SKT_ Lạnh _ Lùng
23 tháng 4 2016 lúc 6:49

Ta thấy B=20^10-1/20^10-3 là phân số lớn hơn 1.

Theo tính chất nếu a/b>1 thì a/b > a+n/b+n ( n khác 0 )

Ta có : 20^10-1/20^10-3 > 20^10-1+2/20^10-3+2

          <=> B > 20^10+1/20^10-3 = A

          <=> B > A

          Vậy B > A    

Tam giác
Xem chi tiết
Phạm Tuấn Kiệt
26 tháng 4 2016 lúc 19:57

Ta có:  

\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Ta lại có:

\(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)

Hay A<B

Nguyễn Thế Anh
26 tháng 4 2016 lúc 20:00

A<B

Đinh Bảo chính
26 tháng 4 2016 lúc 21:02

A>B

 

Phan The Anh
Xem chi tiết
Tam giác
Xem chi tiết
đỗ thị kiều trinh
20 tháng 3 2016 lúc 15:54

ta co:B=2010-1/2010-3>1

=>B>2010-1+2/2010-3+2=2010+1/2010-1=A

vay A<B

Nguyễn Minh Hằng
Xem chi tiết
Akai Haruma
15 tháng 9 lúc 21:12

Lời giải:

$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}=\frac{20^{10}-1}{20^{10}-3}=B$

Vậy $A< B$

Nhi Ngọc
Xem chi tiết
nguyen thi bngoc
24 tháng 3 2016 lúc 11:56

A=20^10+1/20^10-1=1*2/20^10-1

B=20^10-1/20^10+3=1*2/20^10-3

vi 20^10-1>20^10-3

Suy ra 2/20^10-1<2/20^10-3

ông thị minh hạnh
Xem chi tiết
Mineva Glass
23 tháng 4 2016 lúc 21:53

Ta có công thức sau: \(\frac{a}{b}\) > \(\frac{a+m}{b+m}\) ( m khác 0;\(\frac{a}{b}\)>1)

Vì 20^10-1>20^10-3  => B>1

Áp dụng vào bài giải ta có: 

A=\(\frac{\left(20^{10}-1\right)+2}{\left(20^{10}-3\right)+2}\)​ <  \(\frac{20^{10}-1}{20^{10}-3}\)= B

               Vậy A < B