Cho M = \(\frac{3}{\sqrt{x}-2}\)+ \(\frac{2}{\sqrt{x}+2}\)+ \(\frac{8}{x-4}\)
Cho biểu thức \(A=\left(\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{8\sqrt{x}}{4-x}\right);\left(2-\frac{2\sqrt{x}+3}{\sqrt{x}+2}\right)\)
tìm GTNN của A với x>4
Cho M = \(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\frac{3\sqrt{x}-5}{\sqrt{x}-2}+\frac{2\sqrt{x}+10}{x+6\sqrt{x}+5}\)
a) Tìm ĐK, RG
b) Tìm x để M>1
CHo biểu thức A=\(\frac{8-x}{2+\sqrt[3]{x}}:?\left(2+\frac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\frac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\frac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\) vỚI x khác 8,-8,0. CMR gt A ko phụ thuộc vào x
LÀM ON GIÚP
a,Cho biểu thức:\(M=\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-2}+\frac{2\sqrt{x}+10}{x+6\sqrt{x}5}\right)\)
Rút gọn M và tìm x để M>1
cho biểu thức M=\(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-2}+\frac{2\sqrt{x}+10}{x+6\sqrt{x}+5}\right)\)
Rút gọn
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên
\(A=\left(\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{8\sqrt{x}}{4-x}\right):\left(2-\frac{2\sqrt{x}+3}{\sqrt{x}+2}\right)\)
a) RG A
b) Tìm GTNN của A với x > 4
ĐKXĐ: ....
\(A=\left(\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)-2\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\left(\frac{3x-6\sqrt{x}-x-2\sqrt{x}+8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{2\sqrt{x}+4-2\sqrt{x}-3}{\sqrt{x}+2}\right)\)
\(=\frac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}+2\right)}{1}=\frac{2x}{\sqrt{x}-2}\)
b/ \(A=\frac{2x}{\sqrt{x}-2}=2\sqrt{x}+4+\frac{8}{\sqrt{x}-2}=2\left(\sqrt{x}-2\right)+\frac{8}{\sqrt{x}-2}+8\ge2\sqrt{\frac{16\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+8=16\)
\(\Rightarrow A_{min}=16\) khi \(\left(\sqrt{x}-2\right)^2=4\Rightarrow x=16\)
Rút gọn A = \(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right) :\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
a, Rút gọn A b , Tìm x thỏa mãn A > 1 c,Tính A với \(x=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)\(A=\frac{\sqrt{x}+1}{3\left(\sqrt{x}-1\right)}\)
Cho \(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8-x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a. Tìm ĐKXĐ, rút gọn.
b. Với x > 9. Tìm m để \(m\left(\sqrt{x}-3\right).P>x+1\)
Cho: \(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8-x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a. Rút gọn
b. Với x > 9. Tìm m để \(m\left(\sqrt{x}-3\right).P>x+1\)