Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Phan Minh Hieu
Xem chi tiết
Hoàng Thanh Huyền
26 tháng 12 2019 lúc 11:31

a) Đặt  \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

Khách vãng lai đã xóa
Chu Công Đức
26 tháng 12 2019 lúc 16:14

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

Khách vãng lai đã xóa
nguyen ngoc linh
Xem chi tiết
Nguyễn Văn Huy
6 tháng 11 2016 lúc 21:39

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=b.k

c=d.k

ta có Vế Phải : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)

Vế Trái :\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{b^2}{d^2}=\frac{b^2}{d^2}\)

=>VP=VT

=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Học Giỏi Đẹp Trai
29 tháng 11 2016 lúc 15:52

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=b.k; c=d.k

Suy ra:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Chúc bạn học tốt!

Nguyễn Văn Huy
6 tháng 11 2016 lúc 21:39

"." là nhân nha

Tuyển Nguyễn Đình
Xem chi tiết
Kaito Kid
16 tháng 1 2020 lúc 20:50

bài 1 sai đề ko bạn

Khách vãng lai đã xóa
Tuyển Nguyễn Đình
16 tháng 1 2020 lúc 20:56

đề nào và mình ghi sai thứ tự bài

Khách vãng lai đã xóa
Tuyển Nguyễn Đình
16 tháng 1 2020 lúc 21:00

bài 1 thiếu cho ở đàu

Khách vãng lai đã xóa
le hoang tran
Xem chi tiết
nrotd
Xem chi tiết
ST
3 tháng 1 2018 lúc 19:34

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ (1) và (2) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

Từ (3) và (4) => \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

TH2: \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{a+b+b-a}{c+d+d-c}=\frac{2b}{2d}=\frac{b}{d}\left(5\right)\)

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{a+b-b+a}{c+d-d+c}=\frac{2a}{2c}=\frac{a}{c}\left(6\right)\)

Từ (5) và (6) => \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

트란 투안 듀옹
26 tháng 10 2019 lúc 22:15

\(\frac{b}{c}=\frac{a}{d}\)ở đâu vậy

Khách vãng lai đã xóa
nguyen ngoc linh
Xem chi tiết
Nguyễn Huy Tú
6 tháng 11 2016 lúc 21:48

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

NGUYỄN ĐÌNH AN 6A5
Xem chi tiết
Truong Thi Thu Ha
2 tháng 12 2016 lúc 22:56

Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k      ( k \(\in\)Z , k khác 0 )

=>   a = bk  ;  c = dk

Ta có:

    \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)        (1)

     \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)             (2)

Từ (1) và (2) suy ra:    \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

NGUYỄN ĐÌNH AN 6A5
2 tháng 12 2016 lúc 21:07

Ai giúp mình với

Truong Thi Thu Ha
2 tháng 12 2016 lúc 22:57

nhớ nha

đảm bảo bài đó đúng 100%

Hello Bear
Xem chi tiết
Nguyễn Xuân Yến Nhi
16 tháng 10 2016 lúc 15:53

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)

\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Quân Vũ
20 tháng 10 2016 lúc 10:01

Ta co:a^2+b^2•cd=c^2+d^2•ab=>(a+b)^2•ab=(c+d)^2•cd=>(a+b)^3=(c+d)^3=>a•(b^3)=c•(d^3)=>a/c=b^3/d^3=>a/c=b/d=>a/b=c/d. Do la dieu Phai Chung minh

Bình Nguyễn Ngọc
Xem chi tiết
soyeon_Tiểubàng giải
1 tháng 11 2016 lúc 21:22

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)

Đồng Văn Hoàng
1 tháng 11 2016 lúc 21:33

 

\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được

Chúc bạn học tốtleuleu