Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc linh

Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Nguyễn Văn Huy
6 tháng 11 2016 lúc 21:39

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=b.k

c=d.k

ta có Vế Phải : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)

Vế Trái :\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{b^2}{d^2}=\frac{b^2}{d^2}\)

=>VP=VT

=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Học Giỏi Đẹp Trai
29 tháng 11 2016 lúc 15:52

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=b.k; c=d.k

Suy ra:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Chúc bạn học tốt!

Nguyễn Văn Huy
6 tháng 11 2016 lúc 21:39

"." là nhân nha


Các câu hỏi tương tự
Bình Nguyễn Ngọc
Xem chi tiết
Shiine Kokomi
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết
Nguyễn Thị Mỹ Linh
Xem chi tiết
StopBitch
Xem chi tiết
Đào Việt Anh
Xem chi tiết
tống lê kim liên
Xem chi tiết
Vũ Duy
Xem chi tiết
Joker
Xem chi tiết