99x99+99
99+99x99=???
99 + 99 x 99
= 99 + 9801
= 9900
Ủng hộ tíck mik nha !!! Xin đó ~~~~~
99 + 99 x 99
= 99 + 9801
= 9900
Các bạn nhé .
( * ) : 3 tích dành cho ...?
99+99-99x99:99=
ai tick mình mình cho 3 tick!
tính nhanh:99x99:99
Ta có:99x99:99
=99x(99:99)
=99x1
=99
ai tích mình mình tích lại cho
tim mot so tu nhien thich hop de dien vao cho trong : 99x99=99x9+99+99x......99
99x99=99x9+99+99x9+99x.....
= 99x99=99 x 10+99x.......
= 99x99=99x100
= 99x99= 99x(99-10)
= > ... = 89
99x99=99x9+99+99x...
suy ra 99x99=99x(9+1+...)
suy ra 99x99=99x(10+...)
suy ra 99=10+...
suy ra ...=99-10
suy ra ....=89
tìm số cần điền vào chỗ chẫm:
99x99=99x9+99+99x..........
99x99=99x9+99+99x89
Trả lời:
99 x 99 = 99 x 9 + 99 + 99 x 89
~ HOK TỐT ~
89
ミ★h̲̅Ọc̲̅ t̲̅Ốt̲̅★彡
Tính nhanh :99x99+88x9; 99x99+88x10
thong minh bo duoi dau co dung khong ban khe thay doi khong ha ban ge chua minh do ban 1+1=maythui deo biet
bai nay la ngi trong oc la ra ai thong minh lam duoc
99x99=?
99x99=???
So sánh:
\(A=\dfrac{1}{2x2}\)+\(\dfrac{1}{3x3}\)+\(\dfrac{1}{4x4}\)+......+\(\dfrac{1}{99x99}\)+\(\dfrac{1}{100x100}\)với B= \(\dfrac{99}{100}\)
Ta có :
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.................+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)
Ta thấy :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
.............................
\(\dfrac{1}{99.99}< \dfrac{1}{98.99}\)
\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\)
\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.....+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}\)
\(A< B\)