9x = 36+ 27
9x + 18 = 27 + 36
9x + 18 = 27 + 36
9x + 18 = 63
9x = 63 - 18
9x = 45
x = 45 : 9
x = 5
k nha
9x + 18 = 27 + 36
9x + 18 = 63
9x = 63 - 18
9x = 45
x = 45 : 9
x = 5
cho biểu thức:M=9x^2+6y^2+18x-12xy-12y-27. Khẳng định nào sau đây là đúng?a.M > 0 b.M<0 c.M>36 d.M<36
1.
a) x^2+36
b) 9x^2-4
c) x^3+64
d) 8x^3+27
Bài 6 : Phân tích đa thức thành nhân tử :
a, x^2 - 3x + xy - 3y
b, x^4 - 9x^3 + x^2 - 9x
c, x^3 - 4x^2 - 9x + 36
d, x^3 + 2x^2 + 2x +1
e, x^4 + 2x^3 - 4x - 4
f, x^3 - 4x^2 + 12x - 27
Giúp mk vs ạ mk đang cần gấp
a/ \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
Vậy...
b/ \(x^4-9x^3+x^2-9x\)
\(=x^3\left(x-9\right)+x\left(x-9\right)\)
\(=\left(x-9\right)\left(x^3+x\right)\)
\(=x\left(x-9\right)\left(x^2+1\right)\)
Vậy...
c/ \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x^2-9\right)\left(x-4\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-4\right)\)
Vậy...
d/ \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Vậy...
f/ \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
Vậy..
chữ mình nó không được đẹp cho lắm, thông cảm
Bài 1: Giải các phương trình dưới đây
1) x2 - 9 = (x - 3)(5x +2)
2) x3 - 1 = (x - 1)(x2 - 2x +16)
3) 4x2 (x - 1) - x + 1 = 0
4) x3 + 4x2 - 9x - 36 = 0
5) (3x + 5)2 = (x - 1)2
6) 9 (2x + 1)2 = 4 (x - 5)2
7) x2 + 2x = 15
8) x4 + 5x3 + 4x2 = 0
9) (x2 - 4) - (x - 2)(3 - 2x) = 0
10) (3x + 2)(x2 - 1) = (9x2 - 4) (x + 1)
11) (3x - 1)(x2 + 2) = (3x - 1)(7x - 10)
12) (2x2 + 1) (4x - 3) = (x - 12)(2x2 + 1)
1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)
hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)
2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)
hay \(x\in\left\{1;5\right\}\)
3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)
hay \(x\in\left\{-4;3;-3\right\}\)
5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)
\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)
\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)
hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)
1.
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)
\(\Leftrightarrow x+3=5x-2\)
\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)
2.
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)
\(\Leftrightarrow x^2+x+1=x^2-2x+16\)
\(\Leftrightarrow3x=15\Leftrightarrow x=5\)
3.
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)
7.
\(\Leftrightarrow x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
8.\(\Leftrightarrow x^4+x^3+4x^3+4x^2=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0;x=-4\end{matrix}\right.\)
9.\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(3-2x\right)\)
\(\Leftrightarrow x+2=3-2x\)
\(\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)
1.Tìm số tự nhiên x, biết a) x^3=7^3 b) x^3=27 c) x^3=125 d) ( x+1)^3=125 e) (x-2)^3=2^3 f) (x-2)^3=8 h) (x+2)^2=64 j) (x-3)^6=64 k) 9x^2=36 l) (x-1)^4=16 Giúp tớ vs
a: x^3=7^3
=>x^3=343
=>\(x=\sqrt[3]{343}=7\)
b: x^3=27
=>x^3=3^3
=>x=3
c: x^3=125
=>x^3=5^3
=>x=5
d: (x+1)^3=125
=>x+1=5
=>x=4
e: (x-2)^3=2^3
=>x-2=2
=>x=4
f: (x-2)^3=8
=>x-2=2
=>x=4
h: (x+2)^2=64
=>x+2=8 hoặc x+2=-8
=>x=6 hoặc x=-10
j: =>x-3=2 hoặc x-3=-2
=>x=1 hoặc x=5
k:
9x^2=36
=>x^2=36/9
=>x^2=4
=>x=2 hoặc x=-2
l:
(x-1)^4=16
=>(x-1)^2=4(nhận) hoặc (x-1)^2=-4(loại)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
a )9x2=25
b) 9x^2 -36=0
1/Cho hình thang ABCD có đáy AD và BC ,góc A= 36•,góc C= 117•.Tính số đo các góc còn lại
2/Rút gọn các biểu thức:
a/(x+y)^2 = (x-y)^2 c/9x^2-6x+1
b/x^2+9x^2+27. d/4x^2y^2(2xy+9)
Sửa đề 2a) một chút
a) 1. ( x + y )2 + ( x - y )2
= x2 + 2xy + y + x2 - 2xy + y2
= 2x2 + 2y2 = 2( x2 + y2 )
2. ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
b) x2 + 9x2 + 27 = 10x2 + 27
c) 9x2 - 6x + 1 = 9x2 - 3x - 3x + 1
= ( 9x2 - 3x ) - ( 3x - 1 )
= 3x( 3x - 1 ) - 1( 3x - 1 )
= ( 3x - 1 )( 3x - 1 )
= ( 3x - 1 )2
d) 4x2y2( 2xy + 9 ) = 4x2y2 . 2xy + 4x2y2 . 9
= 8x3y3 + 36x2y2
xét hình thang \(ACBD\)
CÓ \(AB//DC\)
\(\Rightarrow\widehat{ABC}+\widehat{BCD}=180^o\left(tcp\right)\)
thay\(\widehat{ABC}+117^o=180^o\)
\(\Rightarrow\widehat{ABC}=180^o-117^o=63^o\)
xét hình thang \(ACBD\)
có \(\widehat{ABC}+\widehat{BCD}+\widehat{ADC}+\widehat{BAD}=360^o\left(ĐL\right)\)
THAY \(63^o+117^o+\widehat{ADC}+36^o=360^o\)
\(\Rightarrow\widehat{ADC}=360^o-63^o-36^o-117^o=144^o\)
5√4x−16 − 7/3√9x−36 = 36 − 3√x−4
giúp với thank
\(5\sqrt{4x-16}-\dfrac{7}{3}\sqrt{9x-36}=36-3\sqrt{x-4}\)
\(\Leftrightarrow10\sqrt{x-4}-7\sqrt{x-4}+3\sqrt{x-4}=36\)
\(\Leftrightarrow\sqrt{x-4}=6\)
\(\Leftrightarrow x-4=36\)
hay x=40