Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 13:10

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

Nguyễn Anh Thư
Xem chi tiết
Công Chúa Auora
21 tháng 11 2015 lúc 18:47

đọc xong đề bài chắc chết mất 

Ngọc Anh
17 tháng 1 2016 lúc 12:47

trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!

Mai Lan
19 tháng 1 2016 lúc 8:00

hoa mắt, chóng mặt, sao nhiều thế bạn

 

msi
Xem chi tiết
Ngô Linh
Xem chi tiết
Linh Ngô
Xem chi tiết
Kim Tae-hyung
Xem chi tiết
Lê Công Hưng
Xem chi tiết
minh quang
12 tháng 4 2020 lúc 10:19

Ta có:

(n2+3n+1)2-1

= (n2+3n+1-1)(n2+3n+1+1)

= (n2+3n)(n2+3n+2)

=(n2+3n)(n2+n+2n+2)

=(n2+3n)(n(n+1)+2(n+1))

=n(n+1)(n+2)(n+3)

với mọi n thuộc N thì n(n+1)(n+2)(n+3) là tích của 4 số tự nhiên liên tiếp

=> tồn tại 2 số chia hết cho 2 và chia hết cho 4 => chia hết cho 8

tồn tại một số chia hết cho 3

mà BCNN(8;3)=24 => n(n+1)(n+2)(n+3) chia hết cho 24

nên (n2+3n+1)2-1 chia hết cho 24 với mọi n thuộc N

Chúc bạn học tốt.

Nguyễn Lệ Mỹ
Xem chi tiết
Phương Trình Hai Ẩn
8 tháng 7 2018 lúc 15:36

Ta có:

n-6 chia hết cho n-1

=> n-1-5 chia hết cho n-1

=> 5 chia hết cho n-1

=> n-1 thuộc ước của 5 = { 1;-1;5;-5}

Giải từng cái ra nhé

b,

3n+2 chia hết cho n-1

=> 3n-3+5 chia hết cho n-1

=> 3.(2-1) + 5 chia hết cho n-1

=> 5 chia hết cho n-1

giống câu a rồi nhé

c,

3n+24 chia hết cho n-4

=> 3n-12 +36 chia hết cho n-4

=> 3.(2-4) + 36 chia hết cho n-4

=> n-4 thuộc ước của 36 = { 1;-1;2;-2;6;-6;3;-3;4;-4;9;-9;12;-12-36;-36}

Giải ra nhé :)

Trâm Trần
Xem chi tiết
Nguyen Viet Bac
11 tháng 7 2017 lúc 11:30

Theo đề bài ta có :

\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)

\(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)

Ta Thấy :

\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp

Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)

Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)

Tích của 2 số tự nhiên liên tiếp chia hết cho 2

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)