\(\left(n^2-3n+1\right)^2-1=\left(n^2-3n\right)\left(n^2-3n+2\right)=n\left(n-3\right)\left(n-1\right)\left(n-2\right)\)
-Theo nguyên lí Dirichlet, trong 4 số tự nhiên liên tiếp luôn có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 4.
\(\Rightarrow n\left(n-1\right)\left(n-2\right)\left(n-3\right)\) chia hết cho \(2.3.4=24\)
\(\Rightarrowđpcm\)
\(n=1\) thì biểu thức đó ko chia hết cho 24.