Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vô Danh kiếm khách
Xem chi tiết
Dark Killer
22 tháng 6 2016 lúc 15:21

a+b+c+d=0 
=> a + b = -(c+d) 
=> (a+b)^3 = -(c+d)^3 
=> a^3 + b^3 + 3ab (a+b) = -c^3- d^3 - 3cd (c+d) 
=> a^3+b^3+c^3+d^3 = -3ab (a+b) - 3cd (c+d) 
=> a^3 + b^3 + c^3 + d^3 = 3ab (c+d)- 3cd (c+d) [vì a+b = - (c+d)] 
==> a^3 + b^^3 + c^3 + d^3 =3 (c+d) (ab-cd) (đpcm)

Nguyễn Hồng Sơn
Xem chi tiết
Huỳnh Diệu Bảo
27 tháng 1 2017 lúc 10:47

 a+b+c+d=0 
=>a+b = - (c+d) 
=> (a+b)^3= - (c+d)^3 
=> a^3 + b^3 + 3ab(a+b) = - c^3 - d^3 - 3cd(c+d) 
=> a^3 + b^3 + c^3 + d^3 = - 3ab(a+b) - 3cd(c+d) 
=> a^3 + b^3 + c^3 + d^3 = 3ab(c+d) - 3cd(c+d) ( Vì a+b = - (c+d)) 
==> a^3 + b^3 + c^3 + d^3 = 3(c+d)(ab-cd) (đpcm).

Tạ Minh Nhã Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 8:02

a+b+c+d=0

=>a+d=-(b+c)

=>(a+d)^3=-(b+c)^3

=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3+3bc\left(a+d\right)\)

=>\(a^3+d^3+b^3+c^3=3bc\left(a+d\right)-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(a+d\right)\left(bc-ad\right)\)

=>\(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)

Đặng Khánh Duy
Xem chi tiết
Đặng Khánh Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2020 lúc 22:01

Ta có: a+b+c+d=0

\(\Leftrightarrow b+c=-\left(a+d\right)\)

\(\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)

\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-\left[a^3+d^3+3ad\left(a+d\right)\right]\)

\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-a^3-d^3-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\cdot\left[-\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)+3ad\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)(đpcm)

Khách vãng lai đã xóa
Đặng Khánh Duy
Xem chi tiết
Trần Xuân Mai
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2020 lúc 16:12

Ta có: a+b+c+d=0

\(a+d=-\left(b+c\right)\)

\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)

\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)

Khách vãng lai đã xóa
phạm thị hồng anh
Xem chi tiết
Nguyễn Thị Anh
27 tháng 6 2016 lúc 14:35

ta có : a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)3=-(c+d)3 
=> a3+b3+3ab(a+b)=-c3-d3-3cd(c+d) 
=> a3+b3+c3+d3=-3ab(a+b)-3cd(c+d) 
=> a3+b3+c3+d3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
=> a3 +b3+c3+d3==3(c+d)(ab-cd)

(dpcm)