Tìm GTNN hoặc GTLN của
(x-1)(x-2)(x-3)(x-4)+15
Tìm GTNN hoặc GTLN của
(x-1)(x-2)(x-3)(x-4)+15
\(\left(x-1\right)\cdot\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-4\right)+15\)
\(=\left(x-1\right)\cdot\left(x-4\right)\cdot\left(x-2\right)\cdot\left(x-3\right)+15\)
\(=\left(x^2-5x+4\right)\cdot\left(x^2-5x+6\right)+15\)
Đặt \(t=x^2-5x+4\), ta có:
\(t\cdot\left(t+2\right)+15=t^2+2t+15\)
\(=t^2+2t+1+14=\left(t+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(t+1=0\Rightarrow t=-1\Leftrightarrow x^2-5x+4=-1\)
\(\Rightarrow x=\dfrac{5\pm\sqrt{5}}{2}\)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)
Đặt \(x^2-5x+4=t\) ,ta có :
\(t\left(t+2\right)+15\)
\(=t^2+2t+15\)
\(=\left(t^2+2t+1\right)+14\)
\(=\left(t+1\right)^2+14\)
\(=\left(x^2-5x+4+1\right)^2+14\)
\(=\left(x^2-5x+1\right)^2+14\)
Ta có :
\(\left(x^2-5x+5\right)^2\ge0\) \(\Rightarrow\left(x^2-5x+5\right)^2+14\ge14\)
Dấu = xảy ra khi \(x^2-5x+5=0\)
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
tìm GTNN hoặc GTLN của
A= 4-x^2+3
C= (x+1)(x+2)(x+3)(x+4)
\(A=4-x^2+3\)
\(=-x^2+7\le7\)
Khi x=0
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+4\) thì
\(=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
cau sau cua HeroZombie ko dung r!sao lai bo trong v!canh cao day!
Tìm GTNN hoặc GTLN của biểu thức
a ,A= 2 . | x - 3 | + | 2x - 10 |
b, B = | 1/4 x - 8 | + | 2 - 1/4 x |
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
tìm GTNN hoặc GTLN của các biểu thức : A= trị tuyệt đối (x+1) +5 B=(x^2+15) / (x^2+3)
câu a sử dụng BDT trị tuyệt đối, vì ko bt viết nên bạn tra mạng BDT này nha
câub:(x2+15)/(x2+3)=(x2+3+12)(x2+3)=1+12/(x2+3)
vì x2 luôn lớn hơn hoặc bằng 0
suy ra x2+3luôn lớn hơn hoặc bằng 3
12/(x2+3) luôn nhỏ hơn hoặc bằng 12/3=4
1+12/(x2+3) luôn nhỏ hơn hoặc bằng 1+4=5
Dấu bằng xảy ra khi x2=0=>x=0
Vậy MaxB=5 khi x=0
A = |x+1| + 5 >=5
Dấu "=" <=> x+1 = 0
<=>x=-1
Vậy Min A = 5 <=> x=-1
B = 1+12/x^2+3 <= 1+ 12/0+3 = 5
Dấu "=" <=> x=0
Vậy Max B = 5 <=> x=0
Tìm GTLN hoặc GTNN của a,A=-x^2 +x+1 b,B=x^2+3x+4 c,C=x^2-11x+30
`a)A=-x^2+x+1`
`=-(x^2-x)+1`
`=-(x^2-2.x. 1/2+1/4-1/4)+1`
`=-(x-1/2)^2+5/4<=5/4`
Dấu "=" xảy ra khi `x-1/2=0<=>x=1/2`
`b)B=x^2+3x+4`
`=x^2+2.x. 3/2+9/4+7/4`
`=(x-3/2)^2+7/4>=7/4`
Dấu "=" xảy ra khi `x-3/2=0<=>x=3/2`
`c)=x^2-11x+30`
`=x^2-2.x. 11/2+121/4-1/4`
`=(x-11/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x+1/4=0<=>x=-1/4`
Tìm GTLN hoặc GTNN của biểu thức \(B=\frac{x^2+15}{x^2+3}\)
Tìm GTNN hoặc GTLN của biểu thức:
a) \(\frac{2\sqrt{x}+15}{\sqrt{x}+4}\)
b) \(\frac{x^2+2}{2x^2+3}\)
Giúp mình nhanh nhé, mai cô kt r
Tìm GTLN hoặc GTNN của
(x-3)(x+3)+2(2x+1)^2
Đặt: \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)
=> \(A=x^2-9+2\left(4x^2+4x+1\right)\)
=> \(A=x^2-9+8x^2+8x+2\)
=> \(A=9x^2+8x-7\)
=> \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)
Có: \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
=> \(A\ge-\frac{79}{9}\)
DẤU "=" XẢY RA <=> \(\left(3x+\frac{4}{3}\right)^2=0\)
<=> \(x=-\frac{4}{9}\)
Vậy A min = \(-\frac{79}{9}\) <=> \(x=-\frac{4}{9}\)
( x - 3 )( x + 3 ) + 2( 2x + 1 )2
= x2 - 9 + 2( 4x2 + 4x + 1 )
= x2 - 9 + 8x2 + 8x + 2
= 9x2 + 8x - 7
= 9x2 + 8x + 16/9 - 79/9
= ( 3x + 4/3 )2 - 79/9
\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9
=> GTNN của biểu thức = -79/9 <=> x = -4/9