tìm x, y nguyên dương thỏa mãn \(3^x+111=\left(y-3\right)\left(y-5\right)\)
Tìm x,y nguyên dương t/m \(3^x+111=\left(y-3\right)\left(y-5\right)\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn \(\left(x+y\right)^3=\left(x-y-6\right)^2\)
Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)
Vì x,y nguyên dương nên
\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:
\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)
Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)
mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)
*x=1 thay vào (1) ta có:
\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)
mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)
*y=2 thay vào (1) ta được:
\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)
Sau đó cm pt trên không có nghiệm nguyên dương.
Vậy x=1;y=3
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)
Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)
\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)
\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)
Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)
\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)
\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))
Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Tìm \(x,y\)nguyên dương thỏa mãn \(\left(4x-1\right)\left(x+2\right)=3^y\).