Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Minh Hieu
Xem chi tiết
Nguyễn Như Đạt
Xem chi tiết
doremon
24 tháng 5 2015 lúc 21:15

n3 + 11n = n- n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6. 
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm) 

Bùi Đức Anh
11 tháng 8 2018 lúc 18:18

n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n

Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6

;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6

Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿

pham thuy trang
Xem chi tiết
Nhok Silver Bullet
14 tháng 8 2015 lúc 7:28

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

Hoàng Anh Tuấn
14 tháng 8 2015 lúc 6:44

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

Hoàng Anh Tuấn
14 tháng 8 2015 lúc 6:48

công thanh sai rồi số nguyên chứ đâu phải số tự nhiên

Thái Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Kiều Vũ Linh
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Minh Hoàng Trương
Xem chi tiết
Nguyễn Vũ Dũng
16 tháng 2 2016 lúc 21:28

Quy ước của riêng tôi :/ là kí hiệu chia hết 

- - - - -- - - 

A = 4mn( m² - n² ) = 4mn( m - n )( m + n ) 

G/S m , n có cùng số dư khi chia hết cho 2 

Từ G/S => m - n :/ 2 => 4mn( m - n )( m + n ) :/ 8 (1) 

G/S m , n không có cùng số dư khi chia cho 2 

=> Một trong hai số phải chia hết cho 2 => mn :/ 2 

=> 4mn( m - n )( m + n ) :/ 8 (2) 

Từ (1) và (2) => A :/ 8 

Ta chứng minh A :/ 3 

Nếu một trong hai số m , n có một số chia hết cho 3 => mn :/ 3 

=> A = 4mn( m - n )( m + n ) :/ 3 (3) 

Nếu trong hai số m , n không có số nào chia hết cho 3 

+ m , n có cùng số dư khi chia cho 3 => m - n :/ 3 => A :/ 3 
+ m . n không có cùng số dư khi chia cho 3 thỏa mãn không số nào :/ 3 => m + n :/ 3 => A :/ 3 

Từ hai G/S trên => A :/ 3 

A:/ 3 , A:/ 8 , ( 8 , 3 ) = 1 => A :/ 24

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2017 lúc 8:53

Đáp án D

Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.

nguyễn thị anh thơ
Xem chi tiết
Nhóc_Siêu Phàm
28 tháng 11 2017 lúc 19:36

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

Bùi Khánh Huy
28 tháng 11 2017 lúc 19:36

Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.

=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.

Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11

mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121

=> (2n+3)^2+11  ko chia hết chia het cho 121

Tuấn Minh Nguyễn
Xem chi tiết
Phương
13 tháng 10 2018 lúc 20:32

 A=mn(m²-n²) 
= mn(m² - 1 - n² + 1) 
= mn [(m-1)(m+1) - (n-1)(n+1)] 
= n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3(tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

Nguyễn Như Đạt
Xem chi tiết
Trần Thị Loan
24 tháng 5 2015 lúc 21:24

n(n+1)()2n+1) = n(n+1)(n+2 + n - 1) = n(n+1)(n+2) + (n-1).n.(n+1)

n(n+1)(n+2) ; (n-1).n.(n+1) đều là tích của 3 số tự nhiên liên tiếp nên các tích đó chia hết 6

=>  n(n+1)(n+2) + (n-1).n.(n+1) chia hết cho 6 

=> n(n+1)()2n+1) chia hết cho 6

Trương Quang Minh
12 tháng 12 2016 lúc 21:33

chứng minh n(n+5)(n+7) chia hết cho 6

Hà Minh Quang
9 tháng 1 2017 lúc 4:55

cậu làm thiếu rồi . cậu còn cần phải chứng minh tại sao 3 số tự nhiên liên tiếp chia hết cho 6