Bài 1 : Cho x,y thuộc N* và x >2 , y > 2. Chứng tỏ x + y < xy
Bài 1 : Cho x,y \(\in\) N* và và x > 2 , y > 2. Chứng tỏ x + y < xy
Bài 1: Tìm x,y $\in$∈ N, biết xy(x+y)=456789
Bài 2: Chứng tỏ tổng n số tự nhiên liên tiếp chia hết cho n, nếu n là số lẻ
Bài 3: Cho a,b $\in$∈ N. Chứng tỏ ab(a+b) chia hết cho 2
bài 1 tìm căp số nguyên x,y sao cho
a,xy=x-y
b,xy=x+y
c,x(y+2)+y=1
bài 2 chứng tỏ với mọi số nguyên n thì
a,(n-1)(n+2)+12 không chia hết cho 9
b,(n+2)(n+9)+21 không chia hết cho 49
mọi người giúp mình nha . Mình cảm ơn trước ai đúng mình sẽ tick
Cho x, y thuộc Q
\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
Chứng tỏ xy + 1 là bình phương của một số hữu tỷ
Coi như biểu thức xác định
\(\Leftrightarrow\left(x+y\right)^2-2xy-2+\frac{\left(xy+1\right)^2}{\left(x+y\right)^2}=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(xy+1\right)+\frac{\left(xy+1\right)^2}{\left(x+y\right)^2}=0\)
\(\Leftrightarrow\left(xy+1\right)^2-2\left(xy+1\right)\left(x+y\right)^2+\left(x+y\right)^4=0\)
\(\Leftrightarrow\left(xy+1-\left(x+y\right)^2\right)^2=0\)
\(\Leftrightarrow xy+1-\left(x+y\right)^2=0\)
\(\Leftrightarrow xy+1=\left(x+y\right)^2\) (đpcm)
bài 1:tìm cặp số tự nhiên x,y biết:
1) (x+5)(y-3) = 15
2) xy+2x +3y = 0
3) xy - 2x + y = 9
bài 2:cho A = 2 + 22 + 23 + ...... + 260. chứng tỏ rằng: A chia hết cho 3, 5, 7
mik cần gấp ;-;
h mik ko gấp nữa, nhưng nếu cậu biết cách giải thì chỉ mik nha ạ, làm tư liệu sau này mik học ý ạ :>
Cho x, y thuộc N và x + y chia hết cho 2
chứng tỏ x - y chia hết cho 2
Th1 x,y le => hieu la so chan
Th2 x,y chan => hieu la so chan
1) tính các biểu thức sau
a) 5x(2x^n-1-y^n)-2x^n-2(5x-y^3)+xy^3(5y^n-3-2x^n-3) (với x thuộc N và x>=3)
b) 3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2) (với x thuộc N và n>=2)
2) rút gọn biểu thức rồi tính giá trị
x^10-2006x^9+2006x^8-2006x^7+2006x^6+...-2006x+2006 biết x=2005
3) chứng tỏ rằng biểu thức sau luôn luôn không âm với mọi giá trị của x và y
A=x^2+y^2-(y(3x-2y)-(x(x+2y)-y(y-x)))
1) Chứng tỏ rằng 2n + 5 và 3n+7 là 2 số nguyên tố cùng nhau
2) tìm x,y thuộc N
4x-xy=15
ai giải jup bài này đi
gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
Lập bảng tìm x ; y thỏa :
\(_{^{\left(x+2\right)\left(y-5\right)=6}}\)
Cho x ; y thuộc N
Chứng tỏ \(A=xy.\left(x^2-y^2\right)⋮6\)
Chứng tỏ
\(\overline{abc}-\overline{bca}⋮9\)