chứng minh rằng:
A=102016+8 là 1 số tự nhiên
mong mọi người giúp em ah!
\(5.7^{2n+2}+2^{3n}⋮41\)với n là số tự nhiên
mong được mọi người giúp đỡ cảm ơn mọi người nhiều
Đặt \(A=5\cdot7^{2\left(n+1\right)}+2^{3n}=5\cdot49^{n+1}+8^n=5\left(41+8\right)^{n+1}+8^n\)
Áp dụng công thức nhị thức Newton, ta có:
\(\left(41+8\right)^{n+1}=41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+\dfrac{n\left(n+1\right)}{2}\cdot41^{n-1}\cdot8^2+...+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\)
Vậy \(A=5\left[41^{n+1}+\left(n+1\right)\cdot41^n\cdot8+..+\left(n+1\right)\cdot41\cdot8^n+8^{n+1}\right]+8^n\)
\(\Rightarrow A=5\left[41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\right]+5\cdot8^{n+1}+8^n\)
Đặt \(B=41^{n+1}\left(n+1\right)\cdot41^n\cdot8+...+\left(n+1\right)\cdot41\cdot8^n\)
\(\Rightarrow B⋮41\)
Đặt \(C=5\cdot8^{n+1}+8^n=8^n\left(5\cdot8+1\right)=8^n\cdot41\)
\(\Rightarrow C⋮41\)
Mà \(A=B+C\Rightarrow A⋮41\)
\(\RightarrowĐPCM\)
cho △ABC vuông tại A, đường cao AH Chứng minh rằng:
a) △ABC ~ HBAb
) △ABC ~HAC
c) △ HBA~ HAC
d) + AB² =BH.BC
+ AC² = CH. BC
+AB² + AC² = BC²
+AH² = BH. CH
+AH.BC = AB. AC
+ 1/AH² = 1/AB²+ 1/AC²
em cần gấp giúp em với
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
c: ΔABC đồng dạng với ΔHBA
ΔABC đồng dạng với ΔHAC
=>ΔHBA đồng dạng với ΔHAC
d: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
Mọi người giúp em 4 bài này với mọi người giải bằng tiếng việt hay là tiếng anh cũng dc ạ (tiếng anh thì tốt ạ)
bài 1:Gọi n là số tự nhiên sao cho n + 1 và 2n + 1 đều là số chính phương . Chứng minh rằng n chia hết cho 24.
bài2:Tìm tất cả các số tự nhiên n sao cho 2n + 1,3n + 1 đều là bình phương hoàn hảo và 6n + 5 là số nguyên tố.
bài3:tìm các số nguyên a, b, c sao cho a^4 + b^4 = 7c^4 +5.
bài4:Tìm tất cả các số nguyên dương x, y và các số nguyên tố p sao cho x^2 −3xy + p^2y^2 = 12p.
1.
\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ
\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)
\(\Rightarrow n=4b\left(b+1\right)\)
Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn
\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)
Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1
Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2
\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\)
\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau
2.
Lý luận tương tự bài 1, ta được n chẵn
Mặt khác các số chính phương chia 5 chỉ có các số dư 0, 1, 4
Mà: \(\left(2n+1\right)+\left(3n+1\right)=5n+2\) chia 5 dư 2
\(\Rightarrow2n+1\) và \(3n+1\) đều chia 5 dư 1
\(\Rightarrow2n⋮5\Rightarrow n⋮5\) (do 2 và 5 nguyên tố cùng nhau)
\(\Rightarrow n=5k\Rightarrow6n+5=5\left(6k+1\right)\)
- TH1: \(k=0\Rightarrow n=0\Rightarrow6n+5\) là SNT (thỏa mãn)
- TH2: \(k>0\Rightarrow6k+1>0\Rightarrow6n+5\) có 2 ước dương lớn hơn 1 \(\Rightarrow\) không là SNT (loại)
Vậy \(n=0\) là giá trị duy nhất thỏa mãn yêu cầu
cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ AH vuông góc với đường chéo BD (H thuộc BD).Chứng minh rằng:
a,tam giác AHB đồng dạng tam giác DAB
b,AD2=DH.AC
c,Tính độ dài DH và HB
xin mọi người giúp mình với cảm ơn rất nhiều ạ
Cho hình vuông ABCD, điểm E đối xứng với A qua D. Kẻ AH vuông góc với BE (H thuộc BE ) . Gọi I, K lần lượt là trung điểm của AH và EH .Chứng minh rằng:
a) Tam giác ACE là tam giác vuông cân.
b) Tứ giác BCKI là hình bình hành.
Giúp mình vs mọi người ơi mình cần gấp lắm THANKS TRƯỚC NHA!
a: Xét ΔCAE có
CD là đường cao
CD là trung tuyến
CD=AE/2
Do đó:ΔCAE vuông cân tại C
b: Xét ΔHAB có HI/HA=HK/HE
nên IK//AE và IK=1/2AE
=>IK=AD=BC
Xét tứ giác BIKC có
IK//BC
IK=BC
Do đó: BIKC là hình bình hành
cho tam giác ABC, đường cao AH. Ta dựng phía ngoài tam giác ABC là các tam giác vuông cân tại A là ABE và CAF. Từ E hạ EK vuông góc HA. a) Chứng minh EK=AH b) Chứng minh đường thẳng AH chứa trung tuyến của tam giác FAE. toán 8 mọi người giúp mình câu b với! cảm ơn mọi người rất nhiều!
Bạn tham khảo bài này nhé
Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath
chứng minh các phân số sau đây là phân số thập phân với mọi số tự nhiên n:
\(\dfrac{n+1}{2n+3}\);\(\dfrac{2n+3}{4n+8}\)
P/S:mọi người giải thích cách làm giúp mình với nhe
Chứng minh phân số tối giản hay phân số thập phân vậy ạ ?
cho em xin lỗi về câu hỏi trước ah, vì em ghi sai đề, mong mọi người thông cảm giúp em câu hỏi này
A=\(\frac{10^{2016}+8}{9}\)là một số tự nhiên
10 chia 9luôn dư 1 10^n cung luôn dư 1 khi chia9
1+8=9 chia 9 dư 0 đpcm
vậy 10^
Cho Tg ABC vuông tại A có đường cao AH.
a) Chứng minh: TgABH đồng dạng Tg CBA
b) Chứng minh: HA^2 = HC.HC
c) Hạ HM vuông góc với AB, HN vuông góc với AC. Gọi O là trung điểm của MN.
Chứng minh
SCOA = SCOH
d) Chứng minh; AM/AB + AN/AC = 1
Mọi người giúp em câu c, d với ạ. Bài chưa học mà trường giao nên em không em biết làm, 2 câu đầu em tự tìm được rồi ạ