Rút gọn biểu thức. C=(x+2/2-x+4x^2/4-x^2-2-x/x+2):x^2-x/2x-x^2
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
Rút gọn biểu thức rồi tìm giá trị x để biểu thức rút gọn âm:
\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}\)
\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}\)
Để biểu thức trên nhận giá trị âm khi \(\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}< 0\)
\(\Rightarrow x^3-2x^2-4x+8< 0\)do \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)< 0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)^2< 0\Leftrightarrow x< -2\)
Rút gọn biểu thức:
a, 3(x-y)^2-2(x-y)^2+(x-y)(x+y)
b, (x-2)(x^2+2x+4)-x(x-2)(x+2)+4x
c, 2(2x+5)^2-3(4x+1)(1-4x)
d, 4x^2-12+9/9-4x^2
e, x^4+x^3+x+1/x^4-x^3+2x^2-x+1
d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)
rút gọn biểu thức sau rồi tìm giá trị x dể biểu thức rút gọn duơng
(x^2-4x+4)/(x^3-2x^2-(4x-8))
rút gọn biểu thức sau rồi tìm giá trị x dể biểu thức rút gọn duơng
(x^2-4x+4)/(x^3-2x^2-(4x-8))
rút gọn biểu thức sau:
a, (x + 2)2 - (x - 4)2 + x2 - 3x +1
b, (2x +2)2 - 4x (x + 2)
a. \(\left(x+2\right)^{^2}-\left(x-4\right)^{^2}+x^{^2}-3x+1=x^{^2}+4x+4-x^{^2}+8x-16+x^{^2}-3x+1=x^{^2}+9x-11\)
b. \(\left(2x+2\right)^{^2}-4x\left(x+2\right)=4x^{^2}+8x+4-4x^{^2}-8x=4\)
Bài 1: Rút gọn biểu thức sau:
A=(2x/1-3y+2x/1+3y):4x^2+14x/9y^2-6y+1
Bài 2: Cho biểu thức sau:
B=x^3+x^2-4x-4/3x^3-12x
a, Tìm điều kiện xác định
b, Rút gọn
c, Tìm x để biểu thức B nhận giá trị 0
Bài 3: Cho biểu thức:
C=(x+2/x^2-5x+x-2/x^2+5x):x^2+10/x^2-25
a, Rút gọn
b, Tìm x để C=2
Mọi người giúp em với ạ, em cảm ơn
Bài 3. Rút gọn biểu thức: a)x+3+√x² - 6x +9 (x ≤3) b)√x² + 4x +4-√√x² (-2≤x≤0) C)√x²-2x+1 phần x-1 -(x>1) d) x-2/+ √x²-4x+4 x-2 (x1. F,2(a−1) –5a Với a0
a: A=x+3+|x-3|
=x+3+3-x(x<=3)
=6
b:\(B=\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
=x+2-x=2
c: \(C=\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{x-1}=\dfrac{x-1}{x-1}=1\)