Cho x thuộc { 0; 1; 2;3 } và y thuộc { 4;5;6 }. Thay x và y bằng chữ số thích hợp để x12y chia hết cho 9.
Có 3 trường hợp:
TH1: x=0 thì x2=0.
TH2: x< 0 thì x2=0
TH3: x>0 thì x2>0
CMR:
a) a^2(a+1)+2x(a+1) chia hết cho 6 với a thuộc Z
b)a(2^a-3)-2a(a+1) chia hết cho 5 với a thuộc Z
c)x^2+2x+2>0 với x thuộc Z
d)x^2-x+1>0 với x thuộc Z
e)-x^2+4x-5< 0 với x thuộc Z
TÌm x thuộc Q sao cho 1/x thuộc Z . x # 0
Cho x thuộc { -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; ..... ; 10 } Y thuộc { -1 ; 0 ; 1; .... ; 5 } Tìm x và y. Biết x + y = 3.
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1-t\end{matrix}\right.\)
M thuộc d nên tọa độ có dạng \(M\left(t;1-t\right)\)
Khoảng cách từ M đến \(\Delta\): \(\dfrac{\left|4t+3\left(1-t\right)+1\right|}{\sqrt{4^2+3^2}}=2\)
\(\Leftrightarrow\left|t+4\right|=10\Rightarrow\left[{}\begin{matrix}t=6\\t=-14\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(6;-5\right)\\M\left(-14;15\right)\end{matrix}\right.\)
Cho f(x) = ax2 + bx + c (a khác 0) có delta = b2-4ac <0 khi đó mệnh đề nào đúng , vì sao ?
1. f(x) > 0 , với mọi x thuộc R
2. f(x)<0 , với mọi x thuộc R
3. f(x) không đổi dấu
4. Tồn tại x để f(x) = 0
3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\)
Cho T=2/x+cănx+1(x>0;x#1) tìm x thuộc R để T thuộc Z
Lần sau bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.
Lời giải:
$x+\sqrt{x}+1>1$ với mọi $x>0, x\neq 1$
$\Rightarrow T=\frac{2}{x+\sqrt{x}+1}< 2$
$x+\sqrt{x}+1>0$ với mọi $x>0, x\neq 1$
$\Rightarrow T>0$
Vậy $0< T< 2$
$T$ nguyên $\Leftrightarrow T=1$
$\Leftrightarrow \frac{2}{x+\sqrt{x}+1}=1$
$\Leftrightarrow x+\sqrt{x}+1=2$
$\Leftrightarrow x+\sqrt{x}-1=0$
$\Rightarrow x=\frac{-1+\sqrt{5}}{2}$
$\Rightarrow x=\frac{3-\sqrt{5}}{2}$ (tm)
Toán học - Lớp 9 |
1) cho Biểu thức P= (x^3+8/x^2-4)+x+2
a) rút gọn P
b)tìm x thuộc Z để P thuộc Z
c) Cho x>2 , tìm Min của P
2) tìm x để P = 4x+3/x^2+1 thuộc Z
3) giống Bài 2 nhưng x thuộc Z
Tìm x thuộc n sao cho 0.(x+9 ) = 0
Ta có: 0.(x + 9) = 0
=> x + 9 thuộc N*
Vì 0 nhâ với số nào cũng bằng 0
cho x thuộc z,so sánh (-7).0.x với 0
Số nào nhân với 0 đều bằng 0 hết nha!
Ta có: \(\left(-7\right).0.x=0\forall x\)
Nên \(\left(-7\right).0.x=0\)
Easy!
Ta có :
( - 7 ) . 0 . x = 0 . x = 0
Vậy ( -7 ) . 0 . x =0 ( đpcm )
(-7).0.x=0
vậy (-7).0.x=0