Sn=[1/(1*2*3*4)]+[1/(2*3*4*5)]+...+{1/[n*(n+1)*(n+2)*(n+3)]}.CMR:Sn<1/18
sn= 1/1×2×3+1/2×3×4+1/3×4×5+,,,+1/n(n+1)(n+2)
2.sn=2/1*2*3+2/2*3*4+2/3*4*5+...+2/n*(n+1)*(n+2) . =>2.sn=1/1*2-1/2*3+1/2*3-1/3*4+1/4*5-1/5*6+...+1/n*(n+1)-1/(n+1)*(n+2). =>2.sn=1/1*2-1/(n+1)*(n+2)=1/2-1/(n+1)*(n+2). =>sn=1/4-1/2*(n+1)*(n+2). Bài so sánh mình và Zlatan làm đúng đấy . Thề luôn.Bạn chọn sai rồi đấy.
Cho dãy số Sn = 1*2*3+2*3*4+*3*4*5+..........+n(n+1)(n+2)
tìm quy luật tinh tổng Sn
Bai toán của casio cấp thành phố nha
cho Sn=(5/1*2*3)+(8/2*3*4)+...+[3n+2/n*(n+1)*(n+2)].CMR:S2008<2
Cho Sn = 1 - 2 + 3 - 4 + . . . + (-1)^n-1 . n với n = 1 , 2 , 3 , . . . Tính S35 + S60
Cho Sn= 1-2+3-4+5-6+...+(-1)^n-1.n (n=1,2,3,4,...)
Tính S1945+S1954
Sn= 1-2+3-4+....(-1)^n-1 .n
Sn= 1-2+3-4+...(-1)^n-1.n với n =1,2,3...
Cho Sn=1-2+3-4+...+(-1)n-1.n với n=1,2,3,...
Tính S35+S60
Lời giải:
\(S_{35}=1-2+3-4+...+35\)
\(=(1-2)+(3-4)+...+(33-34)+35=(-1)+..+(-1)+35\)
\(=(-1).17+35=18\)
\(S_{60}=1-2+3-4+...-60=(1-2)+(3-4)+...+(59-60)\)
\(=(-1)+(-1)+...+(-1)=-30\)
Do đó:
\(S_{35}+S_{60}=-18+30=12\)
cho Sn =1-2+3-4+...+(-1)n-1 .n với n = 1,2,3,....
Tính S35 + S60
\(S_{35}=1-2+3-4+...+35\)
\(\Rightarrow S_{35}=\left(-1\right)+\left(-1\right)+...+35=17.\left(-1\right)+35=18\)
\(S_{60}=1-2+3-4+...+60\)
\(\Rightarrow S_{60}=\left(-1\right)+\left(-1\right)+...+59-60=30.\left(-1\right)=-30\)
\(\Rightarrow S_{35}+S_{60}=18-30=-12\)
Bài 1: Cho biểu thức: P= 1/a^1 + 1/a^2 + .... + 1/a^n (a thuộc N, a>1) CMR: P<1/a-1 Bài 2: Tính: Q= 2^100-2^99+2^98-2^97+2....+2^2-2 Bài 3: Tính: D=S35 + S60 + S100 Với Sn= 1-2+3-4+5-6+...+(-1)^n-1 * n