1.phân tích đa thức thành nhân tử
x^3-5x^2+8x-4
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a^2+b^2+c^2
a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
1. Phân tích đa thức thành nhân tử:
\(x^5-x^4+\left(y+2\right)x^3+\left(y-2\right)x^2+yx+y^2\)
2. Cho các số dương thỏa mãn:
\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tính giá trị biểu thức sau: \(P=\left(a-b\right)^{2009}+\left(b-c\right)^{2009}+\left(c-a\right)^{2009}\)
3. Cho x,y,x đôi một khác nhau và khác 0. Chứng minh rằng nếu:
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\) thì ta có:
\(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
1.
\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)
\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)
\(=\left(x^3-x^2+3x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)
Hay đa thức trên có thể phân tích thành:
\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)
Dựa vào đó em tự tách cho phù hợp
2.
\(VT=a\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+b\left(\dfrac{1}{a^2}+\dfrac{1}{c^2}\right)+c\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(VT\ge\dfrac{2a}{bc}+\dfrac{2b}{ac}+\dfrac{2c}{ab}=2\dfrac{a^2+b^2+c^2}{abc}\)
\(VP=\dfrac{2\left(ab+bc+ca\right)}{abc}\)
\(\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{a^2+b^2+c^2}{abc}\)
\(\Rightarrow ab+bc+ca\ge a^2+b^2+c^2\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)
\(\Rightarrow a=b=c\)
3.
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)
\(\Rightarrow\left(\dfrac{x^2-yz}{a}\right)^2=\left(\dfrac{y^2-xz}{b}\right)\left(\dfrac{z^2-xy}{c}\right)=\dfrac{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}{a^2-bc}\)
\(=\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}\)
Tương tự:
\(\left(\dfrac{y^2-xz}{b}\right)^2=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}\)
\(\left(\dfrac{z^2-xy}{c}\right)^2=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)
\(\Rightarrow\dfrac{x\left(x^3+y^3+z^3-3xyz\right)}{a^2-bc}=\dfrac{y\left(x^3+y^3+z^3-3xyz\right)}{b^2-ac}=\dfrac{z\left(x^3+y^3+z^3-3xyz\right)}{c^2-ab}\)
\(\Rightarrow\dfrac{x}{a^2-bc}=\dfrac{y}{b^2-ac}=\dfrac{z}{c^2-ab}\Rightarrowđpcm\)
Cho a,b là các số dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
bạn kiểm tra lại xem có sai đề không
Cho a,b là các số dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
cho 3 số a b c thỏa mãn a+b+c=2. Tìm giá trị nhỏ nhất của biểu thức a^2+b^2+c^2
Với mọi số thực ta luôn có:
`(a-b)^2+(b-c)^2+(c-a)^2>=0`
`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`
`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`
`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`
`<=>a^2+b^2+c^2>=4/3`
Dấu "=" xảy ra khi `a=b=c=2/3`
~Quang Anh Vũ~
Cho 3 số a b c thỏa mãn a+b+c=3.
Tìm giá trị nhỏ nhất của biểu thức \(A=2017+a^2+b^2+c^2\)
\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)
\(A_{min}=2020\) khi \(a=b=c=1\)
Cho a,b là các số dương thỏa mãn a+b+c=1.
Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c*a
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)
\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)
\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)
\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)
\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)
\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)