Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Hoang
Xem chi tiết
Khuong Thuy Vy Nguyen
Xem chi tiết
Ngô Khánh Linh
Xem chi tiết
Nguyễn Tuấn
24 tháng 5 2016 lúc 19:55

Do a,b,c,d,e>0 mà a+b+c+d+e=1 => a,b,c,d,e<1

Ta có:tổng không đổi,tích lớn nhất khi 2 số bằng nhau

=> ab lớn nhất <=> a=b

     bc lớn nhất <=> b=c

     cd lớn nhất <=> c=d

     de lớn nhất <=> d=e

=> ab+bc+cd+de đạt GTLN <=> a=b=c=d=e

=> a=b=c=d=e=1/5=0,2

=> ab+bc+cd+de=0,16

Nguyễn Thảo Nguyên
Xem chi tiết
Kim taeyeon
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
Lightning Farron
15 tháng 4 2017 lúc 23:09

Bài 1:

Giả sử \(a\ge b\ge c \ge d \ge e\)

\(\Leftrightarrow ab+bc+cd+de \leq a.(b+c+d+e)\)

\(\Leftrightarrow ab+bc+cd+de \leq a.(1-a)\)

\(\Leftrightarrow ab+bc+cd+de \leq -(a-\frac{1}{2})^2 + \frac{1}{4}\)

Đẳng thức xảy ra khi có ít nhất 2 số bằng 0 thì 2 số còn lại bằng \(\frac{1}{2}\) giả sử \(a=b=\dfrac{1}{2};c=d=0\)

Bài 2:

\(BDT\LeftrightarrowΣ\dfrac{3\left(a+b\right)^2+\left(a-b\right)^2}{\left(a-b\right)^2}\ge9\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}-1+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}-1+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}-1\ge-1\)

\(\Leftrightarrow\dfrac{4ab}{\left(a-b\right)^2}+\dfrac{4bc}{\left(b-c\right)^2}+\dfrac{4ca}{\left(a-c\right)^2}\ge-1\)

\(\Leftrightarrow\dfrac{3ab}{\left(a-b\right)^2}+\dfrac{3bc}{\left(b-c\right)^2}+\dfrac{3ca}{\left(a-c\right)^2}\ge-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{3ab}{\left(a-b\right)^2}+1+\dfrac{3bc}{\left(b-c\right)^2}+1+\dfrac{3ca}{\left(a-c\right)^2}+1\ge3-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a^2+ab+b^2}{\left(a-b\right)^2}+\dfrac{b^2+bc+c^2}{\left(b-c\right)^2}+\dfrac{c^2+ac+c^2}{\left(a-c\right)^2}\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{a^3-b^3}{\left(a-b\right)^3}+\dfrac{b^3-c^3}{\left(b-c\right)^3}+\dfrac{c^3-a^3}{\left(a-c\right)^3}\ge\dfrac{9}{4}\)(Đúng)

P/s: Ok, xong tưởng dễ ai dè ngốn mất 2 tiếng :stweek:

Lightning Farron
15 tháng 4 2017 lúc 21:53

mình nghĩ bài 1 P=ab+bc+cd+de thôi bn à cơ sở dựa vào bài Câu hỏi của Mai Thành Đạt - Toán lớp 8 | Học trực tuyến, và 1 số chỗ

Nguyễn Phương
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Trang Hoang
Xem chi tiết